Back to Table of contents

Primeur weekly 2018-11-05

Exascale supercomputing

Cray introduces first exascale-class supercomputer ...

DOE to build next-generation supercomputer at Lawrence Berkeley National Laboratory ...

Crowd computing

FaceMe to use Tatau's distributed supercomputer ...

Quantum computing

Full steam ahead to the quantum web: Mainz University is involved in the European Flagship on Quantum Technologies programme ...

A quantum computer for Europe: Joining forces for new FET flagship project OpenSuperQ ...

Tianhe-2 supercomputer works out the criterion for quantum supremacy ...

A billion euro for quantum research - the Danish contribution ...

One step closer to complex quantum teleportation ...

Tests show integrated quantum chip operations possible ...

Researchers create scalable platform for on-chip quantum emitters ...

Berkeley computer theorists show path to verifying that quantum beats classical ...

Multi-functional quantum bits for future computers ...

Focus on Europe

PRACE to issue The Scientific Case for Computing in Europe 2018-2026 ...

PRACE Digest 2018 now available online ...

Open Edge and HPC Initiative to be launched at SC18 ...

Human brain supercomputer with 1 million processors switched on for first time ...

Middleware

AccelStor unveils the advanced flash data reduction technology for the era of data intensive workloads ...

Bright unveils plans to exhibit at SC18 in Dallas ...

Hardware

Cray reports third quarter 2018 financial results ...

Ohio Supercomputer Center installing new Pitzer Cluster built by Dell EMC ...

SDSC Chief Data Science Officer Ilkay Altintas named an HDSI Fellow ...

Applications

Esther Bron is the winner of the Young eScientist Award 2018 ...

University of Tokyo team becomes Gordon Bell Prize finalist after performing the most complex earthquake simulation to date ...

HPC & Artificial Intelligence: Addressing humanity's grand challenges at SC18 ...

Machine learning to help optimize traffic and reduce pollution ...

The Cloud

Red Hat refines hybrid Cloud innovation with latest version of the world's leading enterprise Linux platform ...

Cloud computing load balancing based on ant colony algorithms improves performance ...

VoiceBase extends deep learning neural network compute to Verne Global ...

HPE delivers first above-the-cloud supercomputing services for astronauts to advance space exploration ...

Human brain supercomputer with 1 million processors switched on for first time

2 Nov 2018 Manchester - The world's largest neuromorphic supercomputer designed and built to work in the same way a human brain does has been fitted with its landmark one-millionth processor core and is being switched on for the first time. The newly formed million-processor-core "Spiking Neural Network Architecture" or "SpiNNaker" machine is capable of completing more than 200 million million actions per second, with each of its chips having 100 million moving parts.

To reach this point it has taken GBP 15million in funding, 20 years in conception and over 10 years in construction, with the initial build starting way back in 2006. The project was initially funded by the EPSRC and is now supported by the European Human Brain Project. It has been switched on for the first time on 2 November.

The SpiNNaker machine, which was designed and built in the University of Manchester's School of Computer Science, can model more biological neurons in real time than any other machine on the planet.

Biological neurons are basic brain cells present in the nervous system that communicate primarily by emitting 'spikes' of pure electro-chemical energy. Neuromorphic computing uses large scale computer systems containing electronic circuits to mimic these spikes in a machine.

SpiNNaker is unique because, unlike traditional computers, it doesn't communicate by sending large amounts of information from point A to B via a standard network. Instead it mimics the massively parallel communication architecture of the brain, sending billions of small amounts of information simultaneously to thousands of different destinations.

Steve Furber, Professor of Computer Engineering, who conceived the initial idea for such a computer, stated: "SpiNNaker completely re-thinks the way conventional computers work. We've essentially created a machine that works more like a brain than a traditional computer, which is extremely exciting."

"The ultimate objective for the project has always been a million cores in a single computer for real time brain modelling applications, and we have now achieved it, which is fantastic."

The computer's creators eventually aim to model up to a billion biological neurons in real time and are now a step closer. To give an idea of scale, a mouse brain consists of around 100 million neurons and the human brain is 1000 times bigger than that.

One billion neurons is 1% of the scale of the human brain, which consists of just under 100 billion brain cells, or neurons, which are all highly interconnected via approximately 1 quadrillion - that is 1 with 15 zeros - synapses.

So, what is a million-core processor computer that mimics the way a brain works used for? One of its fundamental uses is to help neuroscientists better understand how our own brain works. It does this by running extremely large scale real-time simulations which simply aren't possible on other machines.

For example, SpiNNaker has been used to simulate high-level real-time processing in a range of isolated brain networks. This includes an 80,000 neuron model of a segment of the cortex, the outer layer of the brain that receives and processes information from the senses.

It also has simulated a region of the brain called the Basal Ganglia - an area affected in Parkinson's disease, meaning it has massive potential for neurological breakthroughs in science such as pharmaceutical testing.

The power of SpiNNaker has even recently been harnessed to control a robot, the SpOmnibot. This robot uses the SpiNNaker system to interpret real-time visual information and navigate towards certain objects while ignoring others.

Professor Furber added: "Neuroscientists can now use SpiNNaker to help unlock some of the secrets of how the human brain works by running unprecedentedly large scale simulations. It also works as real-time neural simulator that allows roboticists to design large scale neural networks into mobile robots so they can walk, talk and move with flexibility and low power."

Source: University of Manchester

Back to Table of contents

Primeur weekly 2018-11-05

Exascale supercomputing

Cray introduces first exascale-class supercomputer ...

DOE to build next-generation supercomputer at Lawrence Berkeley National Laboratory ...

Crowd computing

FaceMe to use Tatau's distributed supercomputer ...

Quantum computing

Full steam ahead to the quantum web: Mainz University is involved in the European Flagship on Quantum Technologies programme ...

A quantum computer for Europe: Joining forces for new FET flagship project OpenSuperQ ...

Tianhe-2 supercomputer works out the criterion for quantum supremacy ...

A billion euro for quantum research - the Danish contribution ...

One step closer to complex quantum teleportation ...

Tests show integrated quantum chip operations possible ...

Researchers create scalable platform for on-chip quantum emitters ...

Berkeley computer theorists show path to verifying that quantum beats classical ...

Multi-functional quantum bits for future computers ...

Focus on Europe

PRACE to issue The Scientific Case for Computing in Europe 2018-2026 ...

PRACE Digest 2018 now available online ...

Open Edge and HPC Initiative to be launched at SC18 ...

Human brain supercomputer with 1 million processors switched on for first time ...

Middleware

AccelStor unveils the advanced flash data reduction technology for the era of data intensive workloads ...

Bright unveils plans to exhibit at SC18 in Dallas ...

Hardware

Cray reports third quarter 2018 financial results ...

Ohio Supercomputer Center installing new Pitzer Cluster built by Dell EMC ...

SDSC Chief Data Science Officer Ilkay Altintas named an HDSI Fellow ...

Applications

Esther Bron is the winner of the Young eScientist Award 2018 ...

University of Tokyo team becomes Gordon Bell Prize finalist after performing the most complex earthquake simulation to date ...

HPC & Artificial Intelligence: Addressing humanity's grand challenges at SC18 ...

Machine learning to help optimize traffic and reduce pollution ...

The Cloud

Red Hat refines hybrid Cloud innovation with latest version of the world's leading enterprise Linux platform ...

Cloud computing load balancing based on ant colony algorithms improves performance ...

VoiceBase extends deep learning neural network compute to Verne Global ...

HPE delivers first above-the-cloud supercomputing services for astronauts to advance space exploration ...