Back to Table of contents

Primeur weekly 2018-11-26

Focus

European Open Science Cloud catalogue for HPC: more animation than information ...

Exascale supercomputing

Bringing European parallel programming technology to the Exascale era ...

Berkeley Lab and Oak Ridge National Lab share 2018 ACM Gordon Bell Prize ...

Portugal supports Spanish application for pre-exascale EuroHPC supercomputer ...

Quantum computing

Spotting nature's own evolution of quantum tricks could transform quantum technology ...

Quantum artificial life created on the cloud ...

Quantum Machines raises $5.5 million to develop next generation of systems for quantum computers ...

Focus on Europe

Barcelona Supercomputing Center provides services to European Open Science Cloud portal ...

European Open Science Cloud Portal is now up and running ...

Atos was chosen to deliver Finland’s next supercomputer ...

Gauss Centre for Supercomputing sponsors Research Paper Award at ISC19 - Call for Papers is open ...

Middleware

Astronomy and particle physics combine forces for European Open Science Cloud ...

Hardware

Meet Michael, the supercomputer designed to accelerate UK research for EV batteries ...

Atos supports Indian government in its National Supercomputing Mission ...

LINE Corporation collaborates with Mellanox and Cumulus Networks to power advanced messaging platform ...

Dell EMC gains high performance computing momentum and expands portfolio ...

DOE machines dominate record-breaking SC18 ...

Supermicro extends industry-leading portfolio of NVIDIA GPU servers with new systems at GTC China ...

NVIDIA Turing T4 Cloud GPU adoption accelerates ...

Applications

Encouraging prospects for moon hunters ...

INCITE grants awarded to 62 computational research projects ...

NCSA's Student Cluster Competition team places third at SC18 ...

Call for HPC for Energy Innovation proposals ...

NVIDIA HGX-2 GPU-accelerated platform gains broad adoption ...

Encouraging prospects for moon hunters


One of the computer simluations on the formation of moons (white bodies) around Neptune (blue sphere). Image credit: Judit Szulagyi.
19 Nov 2018 Lugano - Astrophysicists of the University of Zürich and ETH Zürich show how the icy moons of Uranus were born. Their result suggests that such potentially habitable worlds are much more abundant in the Universe than previously thought. The unprecedentedly complex computer simulations were performed at the Swiss National Supercomputing Centre (CSCS) in Lugano.

Our Solar System has numerous moons around planets: Apart from Earth and Mars, also Jupiter, Saturn, Neptune and Uranus all have natural satellites. The question is, are moons common even around exoplanets that are orbiting around other stars? "This is an intriguing problem in today's astronomy, which is hard to answer at the moment", stated Judit Szulágyi, a senior research associate of the University of Zürich and ETH Zürich.

The historical discovery of a first exomoon-candidate was just announced in October 2018 by an American group, but the confirmation of this body is still ongoing. With their work now published in the journalAstrophysical Journal LettersJudit Szulágyi and her colleagues Marco Cilibrasi and Lucio Mayer both of the University of Zürich are one step closer to solving the mystery of how many exomoons there could be and what they are like.

The researchers focused on the planets Uranus and Neptune in our Solar System, ice giants with almost 20 times the mass of Earth but much smaller than Jupiter and Saturn. Uranus has a system with five major moons. Neptune, on the other hand has only one major, very heavy satellite, Triton.

"It is intriguing that these two very similar planets have completely different moon systems, indicating a very different formation history", explained Judit Szulágyi. The astrophysicists believe that Triton was captured by Neptune - a relatively rare event. But the moons of Uranus look more like Saturn's and Jupiter's systems that are thought to have originated in a gaseous disk around the planets at the end of their formation.

"So far it was believed that Uranus and Neptune are too light to form such a disk", stated the astrophysicist. Therefore, it was considered that the moons of Uranus could have formed after a cosmic collision - like our own moon, also a relatively infrequent event as the capture. Now the researchers who are also members of the NCCR PlanetS were able to refute this previous idea. Their extremely complex computer simulations reveal that in fact Uranus and Neptune were making their own gas-dust disk while they were still forming. The calculations generated icy moons in-situ, that are very similar in composition with the current Uranian satellites. From the simulations performed by the supercomputer at CSCS it is clear that Neptune originally also was orbited by a Uranus-like, multiple moon system, but this must have been wiped out during the capture of Triton.

The new study has a much wider impact on moons in general, than only on our Solar System formation history. "If ice giants can also form their own satellites, that means that the population of moons in the Universe is much more abundant than previously thought", summarized Judit Szulágyi. Ice giants and mini-Neptune planets are often discovered by exoplanet surveys, so this planet mass category is very frequent. "We can therefore expect many more exomoon discoveries in the next decade", the astrophysicist stated.

This finding is also extremely exciting in the view of searching for habitable worlds. In our Solar System, the two main targets to search for extraterrestrial life are icy moons of Jupiter and Saturn: Europa and Enceladus. They both are thought to harbor liquid water oceans below their thick ice crust. "Those under-surface oceans are obvious places where life as we know could potentially develop", stated Judit Szulágyi. "So a much larger population of icy moons in the Universe means more potentially habitable worlds out there than it was imagined so far. They will be excellent targets to search for life outside the Solar System."

Szulágyi J., Cilibrasi M. and Mayer L. are the authors of the paper titled "In situ formation of icy moons of Uranus and Neptune". It has been published inAstrophysical Journal Letters2018, 868, L13 - DOI: 10.3847/2041-8213/aaeed6.

At the beginning of the animation planets form in gas-dust disks around young stars. Then we see a forming planet vicinity, a disk formed around the nascent planet, where its moons are born (brown spheres). Ice giants (Uranus and Neptune) were forming their moons in such a disk, similarly to gas giants (Jupiter and Saturn). Credits: animation created by S. Dobler, from the simulation done by J. Szulagyi (UZH/ETH).
Source: Swiss National Supercomputing Centre - CSCS

Back to Table of contents

Primeur weekly 2018-11-26

Focus

European Open Science Cloud catalogue for HPC: more animation than information ...

Exascale supercomputing

Bringing European parallel programming technology to the Exascale era ...

Berkeley Lab and Oak Ridge National Lab share 2018 ACM Gordon Bell Prize ...

Portugal supports Spanish application for pre-exascale EuroHPC supercomputer ...

Quantum computing

Spotting nature's own evolution of quantum tricks could transform quantum technology ...

Quantum artificial life created on the cloud ...

Quantum Machines raises $5.5 million to develop next generation of systems for quantum computers ...

Focus on Europe

Barcelona Supercomputing Center provides services to European Open Science Cloud portal ...

European Open Science Cloud Portal is now up and running ...

Atos was chosen to deliver Finland’s next supercomputer ...

Gauss Centre for Supercomputing sponsors Research Paper Award at ISC19 - Call for Papers is open ...

Middleware

Astronomy and particle physics combine forces for European Open Science Cloud ...

Hardware

Meet Michael, the supercomputer designed to accelerate UK research for EV batteries ...

Atos supports Indian government in its National Supercomputing Mission ...

LINE Corporation collaborates with Mellanox and Cumulus Networks to power advanced messaging platform ...

Dell EMC gains high performance computing momentum and expands portfolio ...

DOE machines dominate record-breaking SC18 ...

Supermicro extends industry-leading portfolio of NVIDIA GPU servers with new systems at GTC China ...

NVIDIA Turing T4 Cloud GPU adoption accelerates ...

Applications

Encouraging prospects for moon hunters ...

INCITE grants awarded to 62 computational research projects ...

NCSA's Student Cluster Competition team places third at SC18 ...

Call for HPC for Energy Innovation proposals ...

NVIDIA HGX-2 GPU-accelerated platform gains broad adoption ...