Back to Table of contents

Primeur weekly 2018-11-26

Focus

European Open Science Cloud catalogue for HPC: more animation than information ...

Exascale supercomputing

Bringing European parallel programming technology to the Exascale era ...

Berkeley Lab and Oak Ridge National Lab share 2018 ACM Gordon Bell Prize ...

Portugal supports Spanish application for pre-exascale EuroHPC supercomputer ...

Quantum computing

Spotting nature's own evolution of quantum tricks could transform quantum technology ...

Quantum artificial life created on the cloud ...

Quantum Machines raises $5.5 million to develop next generation of systems for quantum computers ...

Focus on Europe

Barcelona Supercomputing Center provides services to European Open Science Cloud portal ...

European Open Science Cloud Portal is now up and running ...

Atos was chosen to deliver Finland’s next supercomputer ...

Gauss Centre for Supercomputing sponsors Research Paper Award at ISC19 - Call for Papers is open ...

Middleware

Astronomy and particle physics combine forces for European Open Science Cloud ...

Hardware

Meet Michael, the supercomputer designed to accelerate UK research for EV batteries ...

Atos supports Indian government in its National Supercomputing Mission ...

LINE Corporation collaborates with Mellanox and Cumulus Networks to power advanced messaging platform ...

Dell EMC gains high performance computing momentum and expands portfolio ...

DOE machines dominate record-breaking SC18 ...

Supermicro extends industry-leading portfolio of NVIDIA GPU servers with new systems at GTC China ...

NVIDIA Turing T4 Cloud GPU adoption accelerates ...

Applications

Encouraging prospects for moon hunters ...

INCITE grants awarded to 62 computational research projects ...

NCSA's Student Cluster Competition team places third at SC18 ...

Call for HPC for Energy Innovation proposals ...

NVIDIA HGX-2 GPU-accelerated platform gains broad adoption ...

Spotting nature's own evolution of quantum tricks could transform quantum technology


Dr. George Knee, University of Warwick
22 Nov 2018 Warwick - A new test to spot where the ability to exploit the power of quantum mechanics has evolved in nature has been developed by physicists at the University of Warwick. The test identifies a tell-tale hallmark of quantum coherence, classifying the properties of particles in a quantum state that are interacting with a real-world environment. The test should allow scientists to quantify and track quantum coherence in the natural world using laboratory experiments.

Published in the journalPhysical Review A, the theoretical work could lead to experiments that help solve the debate on whether biological processes exploit quantum mechanics to their advantage, and whether evolution could provide us with a template for quantum technologies such as computers, sensors and energy sources.

Microscopic particles in a quantum state are very difficult to spot as the act of observing them changes their state. These stealthy particles can exist in many locations or configurations simultaneously, a feature known as quantum coherence.

The effect underpins technologies such as quantum computers, quantum sensors and quantum communication systems, which use ordered systems isolated from the rest of the world. However, whether quantum coherence exists in the noisier and messier real world is more difficult to identify.

The test involves a procedure to destroy quantum coherence, and then to observe the change in later measurements. Where a measurably large impact is observed, scientists can demonstrate that there must have been quantum coherence in the system. The new work clarifies the possible exceptions to this conclusion, which depend on how quickly the special procedure can destroy the coherence.

Dr. George Knee, 1851 Royal Commission Research Fellow from the University's Department of Physics, stated: "To demonstrate the presence of quantum coherence in a biological system would constitute a paradigm shift, away from the idea that only humans have the ability to engineer systems capable of exhibiting and exploiting quantum coherence. It would also be a step toward the Schroedinger Cat thought experiment, where a living organism is placed in a state where it is, quantum coherently, both dead and alive."

Co-author Dr. Animesh Datta stated: "The results from this test will be valuable in improving our understanding of how chemistry and biology works, and may allow us to answer the question of whether quantum physics has played a part in evolutionary processes."

According to quantum physics, a particle, such as one carrying energy in a photosynthetic organism, can travel along multiple different pathways between an input and an output. The energy carried by the particle could be lost at any moment after it is created. Should the particle move towards its destination faster, there is a lower chance of loss and greater efficiency could be achieved.

Coherence allows for interference between the two pathways, allowing the particle to travel further on average than it could otherwise during the same time period. This suggests that quantum effects might have lent an evolutionary advantage to those organisms adapted to exploiting them.

Dr. Knee added: "The possibilities are tantalising: if our proposed test were carried out in a biological system, and returned a positive result, we might be able to learn quantum engineering design principles from nature. We could then try to create biomimetic technologies that are more robust and perhaps even more powerful than the current generation of quantum technologies, which are almost exclusively based on highly isolated systems. If we were able to turbocharge artificial light harvesting, such as in a solar cell for example, there would be a huge potential for providing affordable, renewable energy."

The paper titled " Subtleties of witnessing quantum coherence in nonisolated systems " is authored by George C. Knee, Max Marcus, Luke D. Smith, and Animesh Datta. It has been published on 21 November 2018 inPhysical Review A, DOI: 10.1103/PhysRevA.98.052328.

Source: University of Warwick

Back to Table of contents

Primeur weekly 2018-11-26

Focus

European Open Science Cloud catalogue for HPC: more animation than information ...

Exascale supercomputing

Bringing European parallel programming technology to the Exascale era ...

Berkeley Lab and Oak Ridge National Lab share 2018 ACM Gordon Bell Prize ...

Portugal supports Spanish application for pre-exascale EuroHPC supercomputer ...

Quantum computing

Spotting nature's own evolution of quantum tricks could transform quantum technology ...

Quantum artificial life created on the cloud ...

Quantum Machines raises $5.5 million to develop next generation of systems for quantum computers ...

Focus on Europe

Barcelona Supercomputing Center provides services to European Open Science Cloud portal ...

European Open Science Cloud Portal is now up and running ...

Atos was chosen to deliver Finland’s next supercomputer ...

Gauss Centre for Supercomputing sponsors Research Paper Award at ISC19 - Call for Papers is open ...

Middleware

Astronomy and particle physics combine forces for European Open Science Cloud ...

Hardware

Meet Michael, the supercomputer designed to accelerate UK research for EV batteries ...

Atos supports Indian government in its National Supercomputing Mission ...

LINE Corporation collaborates with Mellanox and Cumulus Networks to power advanced messaging platform ...

Dell EMC gains high performance computing momentum and expands portfolio ...

DOE machines dominate record-breaking SC18 ...

Supermicro extends industry-leading portfolio of NVIDIA GPU servers with new systems at GTC China ...

NVIDIA Turing T4 Cloud GPU adoption accelerates ...

Applications

Encouraging prospects for moon hunters ...

INCITE grants awarded to 62 computational research projects ...

NCSA's Student Cluster Competition team places third at SC18 ...

Call for HPC for Energy Innovation proposals ...

NVIDIA HGX-2 GPU-accelerated platform gains broad adoption ...