Back to Table of contents

Primeur weekly 2016-11-21

Exascale supercomputing

Brookhaven Lab to lead and partner on DOE exascale computing projects ...

Quantum computing

World's fastest quantum simulator operating at the atomic level ...

Tracking the flow of quantum information ...

Tyndall technology lights the way for quantum computing ...

New attacks on location-based quantum cryptography ...

Focus on Europe

Fall 2016 edition of the e-IRG newsletter available ...

Fujitsu in joint intercontinental data centre coordination field trial using cold data storage ...

Asetek announces first installation using InRackCDU technology ...

Middleware

Altair PBS Cloud is Altair's latest technology to further HPC appliance solutions ...

Intel HPC Orchestrator to include PBS Pro for workload management ...

Altair expands the availability of PBS Professional ...

Adaptive Computing launches new Reporting & Analytics solution ...

Adaptive Computing opens up platform of products ...

Adaptive Computing improves ease-of-use & cost efficiency in Moab HPC Suite 9.1 release ...

Hardware

PGI accelerator compilers for POWER architecture enable easy on-ramp to GPU acceleration with POWER8 and NIVIDA NVLink ...

Liquid silicon: Computer chips could bridge the gap between computation and storage ...

Cray expands customer base for Cray Urika-GX system and previews upcoming software release ...

Fujitsu develops analysis technology to improve communication performance of virtual networks ...

Applications

NVIDIA teams with National Cancer Institute, U.S. Department of Energy to create AI platform for accelerating cancer research ...

Supercomputer simulations help develop new approach to fight antibiotic resistance ...

Earlham Institute receives supercomputing award for wheat research ...

Chinese research team that employs high performance computing to understand weather patterns wins 2016 ACM Gordon Bell Prize ...

Cray systems power deep learning in supercomputing at scale ...

IBM and Topcoder bring Watson to more than one million developers ...

IBM Watson Health and Broad Institute launch major research initiative to study why cancers become drug resistant ...

Julia for Astronomy: Parallel computing with Julia on NERSC supercomputer increases speed of image analysis 225x ...

Julia Computing and IBM present Julia for Deep Learning at SC16 ...

TOP500

Jefferson Lab's newest cluster makes TOP500 list of fastest supercomputers ...

Hewlett Packard Enterprise/SGI Cheyenne and Pleiades systems named on TOP500 list ...

The Cloud

Fujitsu and SUSE expand strategic alliance to develop and support open source products ...

IBM closes acquisition of Sanovi Technologies ...

Tencent Cloud joins IBM and Mellanox to break data sorting world records ...

NVIDIA teams with National Cancer Institute, U.S. Department of Energy to create AI platform for accelerating cancer research


14 Nov 2016 Salt Lake City - NVIDIA is teaming up with the National Cancer Institute, the U.S. Department of Energy (DOE) and several national laboratories on an initiative to accelerate cancer research. The initiative - known as the Cancer Moonshot, announced by President Barack Obama during his 2016 State of the Union Address, and led by Vice President Joseph Biden - aims to deliver a decade of advances in cancer prevention, diagnosis and treatment in just five years. The research efforts include a focus on building an AI framework called CANDLE - Cancer Distributed Learning Environment, which will provide a common discovery platform that brings the power of AI to the fight against cancer.

CANDLE will be the first AI framework designed to change the way we understand cancer, providing data scientists around the world with a powerful tool against this disease.

Teams collaborating on CANDLE include researchers at the National Cancer Institute (NCI), Frederick National Laboratory for Cancer Research and DOE, as well as at Argonne, Oak Ridge, Livermore and Los Alamos National Laboratories. NVIDIA engineers and computational scientists will contribute to all elements of this framework by jointly developing an AI software platform optimized for the latest supercomputing infrastructure, with the goal of achieving 10x annual increases in productivity for cancer researchers.

"AI will be essential to achieve the objectives of the Cancer Moonshot", stated Rick Stevens, associate laboratory director for Computing, Environment and Life Sciences at Argonne National Laboratory. "New computing architectures have accelerated the training of neural networks by 50 times in just three years, and we expect more dramatic gains ahead."

"GPU deep learning has given us a new tool to tackle grand challenges that have, up to now, been too complex for even the most powerful supercomputers", stated Jen-Hsun Huang, founder and chief executive officer, NVIDIA. "Together with the Department of Energy and the National Cancer Institute, we are creating an AI supercomputing platform for cancer research. This ambitious collaboration is a giant leap in accelerating one of our nation's greatest undertakings, the fight against cancer."

The Cancer Moonshot strategic computing partnership between the DOE and NCI to accelerate precision oncology includes three precision medicine pilot projects that aim to provide a better understanding of how cancer grows; discover more effective, less toxic therapies than existing ones; and understand key drivers of their effectiveness outside the clinical trial setting, at the population level. Deep learning techniques are essential for each of these projects.

First, CANDLE will be used to help discover the underlying genetic signatures present in DNA and RNA of common cancers that are predictive of treatment response from the mass of molecular data collected by the NCI genomic data commons. Second, CANDLE will accelerate the molecular dynamic simulations of key protein interactions to understand the underlying biological mechanisms creating conditions for cancer. Third, through semi-supervised learning, CANDLE will automate information extraction and analysis of millions of clinical patient records to build a comprehensive cancer surveillance database of disease metastasis and recurrence.

"Large-scale data analytics - and particularly deep learning - are central to LLNL's growing missions in areas ranging from precision medicine to assuring nuclear nonproliferation", stated James M. Brase, Deputy Associate Director for Computation, Lawrence Livermore National Laboratory. "NVIDIA is at the forefront of accelerated machine learning, and the new CORAL/Sierra architectures are critical to developing the next generation of scalable deep learning algorithms. Combining NVLink-enabled Pascal GPU architectures will allow accelerated training of the largest neural networks."

Georgia Tourassi, Director of the Health Data Sciences Institute at Oak Ridge National Laboratory, stated: "Today cancer surveillance relies on manual analysis of clinical reports to extract important biomarkers of cancer progression and outcomes. By applying high performance computing and AI on scalable solutions like NVIDIA's DGX-1, we can automate and more readily extract important clinical information, greatly improving our population cancer health understanding."
Source: NVIDIA

Back to Table of contents

Primeur weekly 2016-11-21

Exascale supercomputing

Brookhaven Lab to lead and partner on DOE exascale computing projects ...

Quantum computing

World's fastest quantum simulator operating at the atomic level ...

Tracking the flow of quantum information ...

Tyndall technology lights the way for quantum computing ...

New attacks on location-based quantum cryptography ...

Focus on Europe

Fall 2016 edition of the e-IRG newsletter available ...

Fujitsu in joint intercontinental data centre coordination field trial using cold data storage ...

Asetek announces first installation using InRackCDU technology ...

Middleware

Altair PBS Cloud is Altair's latest technology to further HPC appliance solutions ...

Intel HPC Orchestrator to include PBS Pro for workload management ...

Altair expands the availability of PBS Professional ...

Adaptive Computing launches new Reporting & Analytics solution ...

Adaptive Computing opens up platform of products ...

Adaptive Computing improves ease-of-use & cost efficiency in Moab HPC Suite 9.1 release ...

Hardware

PGI accelerator compilers for POWER architecture enable easy on-ramp to GPU acceleration with POWER8 and NIVIDA NVLink ...

Liquid silicon: Computer chips could bridge the gap between computation and storage ...

Cray expands customer base for Cray Urika-GX system and previews upcoming software release ...

Fujitsu develops analysis technology to improve communication performance of virtual networks ...

Applications

NVIDIA teams with National Cancer Institute, U.S. Department of Energy to create AI platform for accelerating cancer research ...

Supercomputer simulations help develop new approach to fight antibiotic resistance ...

Earlham Institute receives supercomputing award for wheat research ...

Chinese research team that employs high performance computing to understand weather patterns wins 2016 ACM Gordon Bell Prize ...

Cray systems power deep learning in supercomputing at scale ...

IBM and Topcoder bring Watson to more than one million developers ...

IBM Watson Health and Broad Institute launch major research initiative to study why cancers become drug resistant ...

Julia for Astronomy: Parallel computing with Julia on NERSC supercomputer increases speed of image analysis 225x ...

Julia Computing and IBM present Julia for Deep Learning at SC16 ...

TOP500

Jefferson Lab's newest cluster makes TOP500 list of fastest supercomputers ...

Hewlett Packard Enterprise/SGI Cheyenne and Pleiades systems named on TOP500 list ...

The Cloud

Fujitsu and SUSE expand strategic alliance to develop and support open source products ...

IBM closes acquisition of Sanovi Technologies ...

Tencent Cloud joins IBM and Mellanox to break data sorting world records ...