Back to Table of contents

Primeur weekly 2018-10-08

Special

Where did the first 500 million euro invested by the European Horizon 2020 programme go? ...

Focus

World's first ARM-based supercomputer Isambard is ready for science ...

Exascale supercomputing

New European project ESCAPE-2 on exascale computing for numerical weather prediction gets under way ...

Berkeley Lab, Oak Ridge, and NVIDIA team breaks exaop barrier with deep learning application ...

Coming soon to exascale computing: Software for chemistry of catalysis ...

Quantum computing

ORNL researchers advance quantum computing, science through six DOE awards ...

Berkeley Lab to build an advanced quantum computing testbed ...

Berkeley Lab to push quantum information frontiers with new programmes in computing, physics, materials, and chemistry ...

Berkeley Quantum to accelerate innovation in quantum information science ...

Quantum software company Zapata Computing adds Clark Golestani to Board ...

Defects promise quantum communication through standard optical fiber ...

Focus on Europe

Atos and the University of Reims launch ROMEO, one of the most powerful supercomputers in the world, under the sponsorship of Cedric Villani ...

Special Edition of Open e-IRG Workshop under the Austrian EU Presidency will focus on relationship between Open Science, FAIR data and EOSC ...

Goethe University to develop green supercomputer for science ...

Calling on HPC experts and enthusiasts to propose tutorials and workshops for ISC 2019 ...

ISC 2019 calls for research paper submission by December 12, 2018 ...

Middleware

USC ISI to pilot Cyberinfrastructure Center of Excellence for National Science Foundation ...

Hardware

Tintri co-founder Mark Gritter joins Tintri by DDN as CTO to lead analytics and server virtualization vision ...

DDN simplifies the AI data centre with NVIDIA ...

New research could lead to more energy-efficient computing ...

Applications

New simulation sheds light on spiraling supermassive black holes ...

DNA unzipped, turned around, and rezipped ...

Dark Energy Survey releases first year value-added data products ...

A quantum leap toward expanding the search for dark matter ...

HP-CONCORD paves the way for scalable machine learning in HPC ...

In disaster's wake, novel computing techniques support emergency responders ...

Transition metal dichalcogenides could increase computer speed, memory by a million times ...

A new brain-inspired architecture could improve how computers handle data and advance AI ...

Rochester Institute of Technology leads multi-university collaboration to simulate neutron star mergers ...

The Cloud

Oracle rolls out Autonomous NoSQL Database service ...

Quanta Cloud Technology showcases AI portfolio options at GTC Europe ...

ZeroStack delivers GPU-as-a-Service via NVIDIA hardware ...

Transition metal dichalcogenides could increase computer speed, memory by a million times

This is Dr. Mark Stockman, director of the Center for Nano-Optics and a Regents' Professor in the Department of Physics and Astronomy at Georgia State University. Credit: Georgia State University.2 Oct 2018 Atlanta - Transition metal dichalcogenides (TMDCs) possess optical properties that could be used to make computers run a million times faster and store information a million times more energy-efficiently, according to a study led by Georgia State University.

Computers operate on the time scale of a fraction of a nanosecond, but the researchers suggest constructing computers on the basis of TMDCs, atomically thin semiconductors, could make them run on the femtosecond time scale, a million times faster. This would also increase computer memory speed by a millionfold.

"There is nothing faster, except light", stated Dr. Mark Stockman, lead author of the study and director of the Center for Nano-Optics and a Regents' Professor in the Department of Physics and Astronomy at Georgia State. "The only way to build much faster computers is to use optics, not electronics. Electronics, which is used by current computers, can't go any faster, which is why engineers have been increasing the number of processors. We propose the TMDCs to make computers a million times more efficient. This is a fundamentally different approach to information technology."

The researchers propose a theory that TMDCs have the potential to process information within a couple of femtoseconds. A femtosecond is one millionth of one billionth of a second. A TMDC has a hexagonal lattice structure that consists of a layer of transition metal atoms sandwiched between two layers of chalcogen atoms. This hexagonal structure aids in the computer processor speed and also enables more efficient information storage. The findings are published in the journalPhysical Review Bin the prestigious Rapid Communications section.

The TMDCs have a number of positive qualities, including being stable, non-toxic, thin, light and mechanically strong. Examples include molybdenum disulfide (MOS2) and tungsten diselenide (WSe2). TMDCs are part of a large family called 2D materials, which is named after their extraordinary thinness of one or a few atoms. In this study, the researchers also established the optical properties of the TMDCs, which allow them to be ultrafast.

In the hexagonal lattice structure of TMDCs, electrons rotate in circles in different states, with some electrons spinning to the left and others turning to the right depending on their position on the hexagon. This motion causes a new effect that is called topological resonance. Such an effect allows one to read, write or process a bit of information in only a few femtoseconds.

There are numerous examples of TMDCs, so in the future, the researchers would like to determine the best one to use for computer technology.

Co-authors of the study include S. Azar Oliaei Motlagh, Jhih-Sheng Wu and Vadym Apalkov of Georgia State.

The study is funded by the U.S. Department of Energy and the U.S. Air Force Office of Scientific Research.

Source: Georgia State University

Back to Table of contents

Primeur weekly 2018-10-08

Special

Where did the first 500 million euro invested by the European Horizon 2020 programme go? ...

Focus

World's first ARM-based supercomputer Isambard is ready for science ...

Exascale supercomputing

New European project ESCAPE-2 on exascale computing for numerical weather prediction gets under way ...

Berkeley Lab, Oak Ridge, and NVIDIA team breaks exaop barrier with deep learning application ...

Coming soon to exascale computing: Software for chemistry of catalysis ...

Quantum computing

ORNL researchers advance quantum computing, science through six DOE awards ...

Berkeley Lab to build an advanced quantum computing testbed ...

Berkeley Lab to push quantum information frontiers with new programmes in computing, physics, materials, and chemistry ...

Berkeley Quantum to accelerate innovation in quantum information science ...

Quantum software company Zapata Computing adds Clark Golestani to Board ...

Defects promise quantum communication through standard optical fiber ...

Focus on Europe

Atos and the University of Reims launch ROMEO, one of the most powerful supercomputers in the world, under the sponsorship of Cedric Villani ...

Special Edition of Open e-IRG Workshop under the Austrian EU Presidency will focus on relationship between Open Science, FAIR data and EOSC ...

Goethe University to develop green supercomputer for science ...

Calling on HPC experts and enthusiasts to propose tutorials and workshops for ISC 2019 ...

ISC 2019 calls for research paper submission by December 12, 2018 ...

Middleware

USC ISI to pilot Cyberinfrastructure Center of Excellence for National Science Foundation ...

Hardware

Tintri co-founder Mark Gritter joins Tintri by DDN as CTO to lead analytics and server virtualization vision ...

DDN simplifies the AI data centre with NVIDIA ...

New research could lead to more energy-efficient computing ...

Applications

New simulation sheds light on spiraling supermassive black holes ...

DNA unzipped, turned around, and rezipped ...

Dark Energy Survey releases first year value-added data products ...

A quantum leap toward expanding the search for dark matter ...

HP-CONCORD paves the way for scalable machine learning in HPC ...

In disaster's wake, novel computing techniques support emergency responders ...

Transition metal dichalcogenides could increase computer speed, memory by a million times ...

A new brain-inspired architecture could improve how computers handle data and advance AI ...

Rochester Institute of Technology leads multi-university collaboration to simulate neutron star mergers ...

The Cloud

Oracle rolls out Autonomous NoSQL Database service ...

Quanta Cloud Technology showcases AI portfolio options at GTC Europe ...

ZeroStack delivers GPU-as-a-Service via NVIDIA hardware ...