Back to Table of contents

Primeur weekly 2017-10-02

Special

2017 - Another year on the Road to Exascale: HPC applications towards exascale ...

Focus

CEA, ETP4HPC and European Commission working hard together to deliver commercial exascale by 2023 ...

Exascale supercomputing

Cartography of the cosmos ...

Quantum computing

A quantum computer to tackle fundamental science problems ...

Quantum communications bend to our needs ...

With new Microsoft breakthroughs, general purpose quantum computing moves closer to reality ...

Focus on Europe

SHAPE Sixth Call for Applications now open ...

EPCC to announce best use of ARCHER competition winners ...

Middleware

Bright Computing announces integration with IBM Power systems ...

US-based CryoEM company, SingleParticle.com, partners with Bright ...

Hardware

Cray takes aim at fast-growing HPC storage market with completion of strategic transaction of Seagate's ClusterStor storage business ...

Penguin Computing announces NVIDIA Tesla V100-based servers to drive Deep Learning and Artificial Intelligence ...

Penguin Computing announces Altus servers with AMD EPYC 7000 series high performance processors ...

Supermicro introduces broadest portfolio of GPU optimized systems for NVIDIA Tesla V100 GPUs ...

New type of supercomputer could be based on 'magic dust' combination of light and matter ...

Applications

Antonio Peña is the IEEE-CS TCHPC 2017 Award Winner for Excellence for Early Career Researchers in HPC ...

University of Texas at El Paso researchers use supercomputers to understand the fundamentals of artificial photosynthesis ...

Turbocharging engine design ...

The sublime challenge of jet noise ...

Mapping black hole collisions gives astronomers - and hitchhikers - a new guide ...

George Washington-led consortium and FDA release new specifications to advance genomic data analysis ...

Artificial intelligence for obtaining chemical fingerprints ...

IBM Research and UC San Diego collaborate to advance the use of Artificial Intelligence for Healthy Living ...

Dresden researchers have pioneered a brain-network bio-inspired algorithm to predict new therapeutic targets of approved drugs ...

The Cloud

IBM unveils a new high-powered analytics system for fast access to data science ...

HPE chooses Mellanox Spectrum to power StoreFabric M-series switches ...

New type of supercomputer could be based on 'magic dust' combination of light and matter


Scientists have developed a new technique that could speed up supercomputers exponentially, by using a "magic dust" that glows to highlight an optimal solution rather than seek it out in a linear fashion. Credit: University of Cambridge.
25 Sep 2017 Cambridge - A team of researchers from the UK and Russia have successfully demonstrated that a type of 'magic dust' which combines light and matter can be used to solve complex problems and could eventually surpass the capabilities of even the most powerful supercomputers.

The researchers, from Cambridge, Southampton and Cardiff Universities in the UK and the Skolkovo Institute of Science and Technology in Russia, have used quantum particles known as polaritons - which are half light and half matter - to act as a type of 'beacon' showing the way to the simplest solution to complex problems. This entirely new design could form the basis of a new type of computer that can solve problems that are currently unsolvable, in diverse fields such as biology, finance or space travel. The results are reported in the journal Nature Materials .

Our technological progress - from modelling protein folding and behaviour of financial markets to devising new materials and sending fully automated missions into deep space - depends on our ability to find the optimal solution of a mathematical formulation of a problem: the absolute minimum number of steps that it takes to solve that problem.

The search for an optimal solution is analogous to looking for the lowest point in a mountainous terrain with many valleys, trenches, and drops. A hiker may go downhill and think that they have reached the lowest point of the entire landscape, but there may be a deeper drop just behind the next mountain. Such a search may seem daunting in natural terrain, but imagine its complexity in high-dimensional space. "This is exactly the problem to tackle when the objective function to minimise represents a real-life problem with many unknowns, parameters, and constraints", stated Professor Natalia Berloff of Cambridge's Department of Applied Mathematics and Theoretical Physics and the Skolkovo Institute of Science and Technology, and the paper's first author.

Modern supercomputers can only deal with a small subset of such problems when the dimension of the function to be minimised is small or when the underlying structure of the problem allows it to find the optimal solution quickly even for a function of large dimensionality. Even a hypothetical quantum computer, if realised, offers at best the quadratic speed-up for the "brute-force" search for the global minimum.

Natalia Berloff and her colleagues approached the problem from an unexpected angle: What if instead of moving along the mountainous terrain in search of the lowest point, one fills the landscape with a magical dust that only shines at the deepest level, becoming an easily detectible marker of the solution?

"A few years ago our purely theoretical proposal on how to do this was rejected by three scientific journals", stated Natalia Berloff. "One referee said, 'Who would be crazy enough to try to implement this?!' So we had to do it ourselves, and now we've proved our proposal with experimental data."

Their 'magic dust' polaritons are created by shining a laser at stacked layers of selected atoms such as gallium, arsenic, indium, and aluminium. The electrons in these layers absorb and emit light of a specific colour. Polaritons are ten thousand times lighter than electrons and may achieve sufficient densities to form a new state of matter known as a Bose-Einstein condensate, where the quantum phases of polaritons synchronise and create a single macroscopic quantum object that can be detected through photoluminescence measurements.

The next question the researchers had to address was how to create a potential landscape that corresponds to the function to be minimised and to force polaritons to condense at its lowest point. To do this, the group focused on a particular type of optimisation problem, but a type that is general enough so that any other hard problem can be related to it, namely minimisation of the XY model which is one of the most fundamental models of statistical mechanics. The authors have shown that they can create polaritons at vertices of an arbitrary graph: as polaritons condense, the quantum phases of polaritons arrange themselves in a configuration that correspond to the absolute minimum of the objective function.

"We are just at the beginning of exploring the potential of polariton graphs for solving complex problems", stated co-author Professor Pavlos Lagoudakis, Head of the Hybrid Photonics Lab at the University of Southampton and the Skolkovo Institute of Science and Technology, where the experiments were performed. "We are currently scaling up our device to hundreds of nodes, while testing its fundamental computational power. The ultimate goal is a microchip quantum simulator operating at ambient conditions."

Source: University of Cambridge

Back to Table of contents

Primeur weekly 2017-10-02

Special

2017 - Another year on the Road to Exascale: HPC applications towards exascale ...

Focus

CEA, ETP4HPC and European Commission working hard together to deliver commercial exascale by 2023 ...

Exascale supercomputing

Cartography of the cosmos ...

Quantum computing

A quantum computer to tackle fundamental science problems ...

Quantum communications bend to our needs ...

With new Microsoft breakthroughs, general purpose quantum computing moves closer to reality ...

Focus on Europe

SHAPE Sixth Call for Applications now open ...

EPCC to announce best use of ARCHER competition winners ...

Middleware

Bright Computing announces integration with IBM Power systems ...

US-based CryoEM company, SingleParticle.com, partners with Bright ...

Hardware

Cray takes aim at fast-growing HPC storage market with completion of strategic transaction of Seagate's ClusterStor storage business ...

Penguin Computing announces NVIDIA Tesla V100-based servers to drive Deep Learning and Artificial Intelligence ...

Penguin Computing announces Altus servers with AMD EPYC 7000 series high performance processors ...

Supermicro introduces broadest portfolio of GPU optimized systems for NVIDIA Tesla V100 GPUs ...

New type of supercomputer could be based on 'magic dust' combination of light and matter ...

Applications

Antonio Peña is the IEEE-CS TCHPC 2017 Award Winner for Excellence for Early Career Researchers in HPC ...

University of Texas at El Paso researchers use supercomputers to understand the fundamentals of artificial photosynthesis ...

Turbocharging engine design ...

The sublime challenge of jet noise ...

Mapping black hole collisions gives astronomers - and hitchhikers - a new guide ...

George Washington-led consortium and FDA release new specifications to advance genomic data analysis ...

Artificial intelligence for obtaining chemical fingerprints ...

IBM Research and UC San Diego collaborate to advance the use of Artificial Intelligence for Healthy Living ...

Dresden researchers have pioneered a brain-network bio-inspired algorithm to predict new therapeutic targets of approved drugs ...

The Cloud

IBM unveils a new high-powered analytics system for fast access to data science ...

HPE chooses Mellanox Spectrum to power StoreFabric M-series switches ...