Back to Table of contents

Primeur weekly 2016-10-24

Focus

EUDAT Project Director Damien Lecarpentier to expand on added value of EUDAT for data storage, the success of the first DI4R Conference and on the importance of Key Performance Indicators for e-infrastructures ...

Quantum computing

Exploring defects in nanoscale devices for possible quantum computing applications ...

Quantum computers: 10-fold boost in stability achieved ...

New 3D wiring technique brings scalable quantum computers closer to reality ...

Focus on Europe

ISC 2017 seeks contributors for Conference programme ...

Middleware

Allinea brings new software performance briefings to SC16 ...

Hardware

Innovative technique for shaping light could solve bandwidth crunch ...

R&D collaboration in integrated electronic systems receives top award ...

UK Met Office installs new HPC system to significantly improve productivity of weather and climate data analysis ...

Fast data sharing with South Korea via Netherlight ...

NSF funds new projects to advance energy-efficient computing ...

Applications

Can we find more benign nanomaterials? ...

Scientists find technique to improve carbon superlattices for quantum electronic devices ...

A new class of materials could realize quantum computers ...

Rhön-Klinikum Hospitals to study how IBM Watson can support doctors in the diagnosis of rare diseases ...

Predicting jellyfish invasions at coastal power stations ...

IBM and Quest Diagnostics launch Watson-powered genomic sequencing service to help physicians bring precision cancer treatments to patients nationwide ...

A new spin on superconductivity ...

Insilico Medicine to present on recent advances in AI at BioData World in Cambridge ...

Unraveling the science behind biomass breakdown ...

T-rays will speed up computer memory by a factor of 1,000 ...

Promise of gene therapy for glaucoma shines bright in award-winning image ...

The Cloud

Amazon Web Services Cloud now available to customers from data centres in Ohio ...

IBM Cloud expands Bluemix ecosystem in China to fuel blockchain and IoT innovation ...

Atos teams with VMware to launch Digital Private Cloud offering ...

DNAstack launches genomics platform to accelerate disease research and precision medicine ...

NSF funds new projects to advance energy-efficient computing


NSF has long supported cross-disciplinary, fundamental research in computing, advanced materials, nanoscale science, and many other key engineering research areas, including the societal implications of science and technology. The new E2CDA projects consider simultaneously novel approaches, from nanoscale devices and materials to their integration into three-dimensional systems, while inventing new computer architectures to process, store and communicate data. Shown here is an illustration of work done by an NSF-funded electrical engineer who creates tiny structures out of diamonds and other elements to manipulate how light and matter interact on the nanoscale. Credit: Jay Penni; Marko Loncar, Harvard University.
19 Oct 2016 Arlington - The National Science Foundation and Semiconductor Research Corporation have jointly awarded $21.6 million for nine new projects to find revolutionary solutions that will enable more energy-efficient computing, from brain-inspired computer architectures to hybrid digital-analogue designs.

Researchers aim to create a new type of computer that can pro-actively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain, as detailed by the White House when it announced the Nanotechnology-Inspired Grand Challenge for Future Computing.

"Only disruptive breakthroughs can enable computers to perform as the human brain does, in terms of problem-solving capability and lower power, which, for the human brain, is less than a light bulb's worth of consumption", stated Dimitris Pavlidis, NSF's Directorate for Engineering programme director for the Energy-Efficient Computing: from Devices to Architectures (E2CDA) initiative.

U.S. computing capabilities rely on the continuous research and development of new computing systems with rapidly increasing performance. Yet, improvements in computing performance are severely limited by the amount of energy needed to manipulate, store and transport data.

According to Dimitris Pavlidis, the newly awarded, three-year projects consider simultaneously novel approaches - including developing nanoscale devices and materials and integrating them into three-dimensional systems - while inventing new computer architectures to process, store and communicate data.

The new effort aligns with one of NSF's big ideas for future investment: to advance the human-technology frontier.

"This research aims to spark the interdisciplinary science and engineering needed to shape the future of computing", stated Sankar Basu, program director in NSF's Directorate for Computer and Information Science and Engineering. "This effort aims to create the fundamental base required to later tackle the bigger problems."

The new endeavour draws on the strengths of partners in industry as well as academia.

"The E2CDA programme is a culmination of more than five years of working with our NSF partners to define a major new academic research initiative", stated Jonathan Candelaria, SRC programme director. "This initiative has the potential to create a truly disruptive breakthrough by identifying the most probable path towards creating a new computing paradigm - one that is orders of magnitude more energy efficient, and just as importantly incorporates cognitive self-learning capabilities alongside programmable arithmetic computation."

The effort builds upon a history of NSF investments in fundamental engineering, computer science and materials research. For instance, significant investments by NSF and the Air Force Office of Scientific Research beginning in 2014 allowed researchers to pursue transformative research in the area of 2D atomic-layer research and engineering (2-DARE), leading to advances in electronics, photonics, sensors and other applications.

In addition to the Nanotechnology-Inspired Grand Challenge for Future Computing, the jointly supported research effort aligns with the National Strategic Computing Initiative and other interagency initiatives and priorities.

The nine E2CDA projects are:

  • 2D Electrostrictive FETs for Ultra-Low Power Circuits and Architectures, Saptarshi Das, Pennsylvania State University
  • A Fast 70 mV Transistor Technology for Ultra-Low-Energy Computing, Benton Calhoun, University of Virginia; Mykhailo Povolotskyi, Purdue University; and Mark Rodwell, University of California, Santa Barbara
  • Electronic-Photonic Integration Using the Transistor Laser for Energy-Efficient Computing, John Dallesasse, University of Illinois at Urbana-Champaign; and Yanjing Li, University of Chicago
  • Energy Efficient Computing with Chip-Based Photonics, Yeshaiahu Fainman, University of California, San Diego; Alexander Gaeta, Columbia University; Benjamin Lev, Stanford University; and Marin Soljacic, Massachusetts Institute of Technology
  • Energy Efficient Learning Machines, Subhasish Mitra, Stanford University; and Sayeef Salahuddin, University of California, Berkeley
  • Excitonic Devices, Leonid Butov, University of California, San Diego
  • EXtremely Energy Efficient Collective ELectronics, Suman Datta, University of Notre Dame
  • Memory, Logic and Logic in Memory Using Three Terminal Magnetic Tunnel Junctions, Marc Baldo, Massachusetts Institute of Technology
  • Self-Adaptive Reservoir Computing with Spiking Neurons: Learning Algorithms and Processor Architectures, Peng Li, Texas A&M Engineering Experiment Station.
Source: National Science Foundation

Back to Table of contents

Primeur weekly 2016-10-24

Focus

EUDAT Project Director Damien Lecarpentier to expand on added value of EUDAT for data storage, the success of the first DI4R Conference and on the importance of Key Performance Indicators for e-infrastructures ...

Quantum computing

Exploring defects in nanoscale devices for possible quantum computing applications ...

Quantum computers: 10-fold boost in stability achieved ...

New 3D wiring technique brings scalable quantum computers closer to reality ...

Focus on Europe

ISC 2017 seeks contributors for Conference programme ...

Middleware

Allinea brings new software performance briefings to SC16 ...

Hardware

Innovative technique for shaping light could solve bandwidth crunch ...

R&D collaboration in integrated electronic systems receives top award ...

UK Met Office installs new HPC system to significantly improve productivity of weather and climate data analysis ...

Fast data sharing with South Korea via Netherlight ...

NSF funds new projects to advance energy-efficient computing ...

Applications

Can we find more benign nanomaterials? ...

Scientists find technique to improve carbon superlattices for quantum electronic devices ...

A new class of materials could realize quantum computers ...

Rhön-Klinikum Hospitals to study how IBM Watson can support doctors in the diagnosis of rare diseases ...

Predicting jellyfish invasions at coastal power stations ...

IBM and Quest Diagnostics launch Watson-powered genomic sequencing service to help physicians bring precision cancer treatments to patients nationwide ...

A new spin on superconductivity ...

Insilico Medicine to present on recent advances in AI at BioData World in Cambridge ...

Unraveling the science behind biomass breakdown ...

T-rays will speed up computer memory by a factor of 1,000 ...

Promise of gene therapy for glaucoma shines bright in award-winning image ...

The Cloud

Amazon Web Services Cloud now available to customers from data centres in Ohio ...

IBM Cloud expands Bluemix ecosystem in China to fuel blockchain and IoT innovation ...

Atos teams with VMware to launch Digital Private Cloud offering ...

DNAstack launches genomics platform to accelerate disease research and precision medicine ...