If we had to choose the most important and newsworthy piece of science news for 2016, the discovery of gravitational waves would have every chance of winning first prize.
The two signals that have been produced so far came from the collision and merger of two black holes in some remote part of the universe. The first detection was announced in February and the second in June, both by scientists from the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States.
To determine the patterns of these waves and simulate how those mysterious fusions take place - a phenomenon characteristic of Einstein's general theory of relativity - scientists use the best supercomputers, such as the MareNostrum from Barcelona, Spain's most powerful supercomputer; however, there could be other, less complicated ways.
Physicists Roberto Emparan and Marina Martínez from the University of Barcelona have found a simple and exact way to approach the subject of the event horizon of two merging black holes, where one is much smaller than the other.
The event horizon is the boundary that characterises a black hole; whereas the events inside the event horizon cannot affect an observer on the outside, the opposite can occur. When two black holes merge together, their event horizons join together to become one.
"Surprisingly, the ideas and techniques used in our work are elemental and allow us to thoroughly study the properties of the horizon at the moment both black holes join together to form one", pointed out Roberto Emparan, who along with his colleague has published the results in the journalClassical and Quantum Gravity.
The equations utilised to solve the problem are based on the physicists' basic knowledge, such as the definition of an event horizon and the so-called equivalence principle, which is part of the foundation of Einstein's theory of gravity.
According to this idea, an observer cannot tell the difference between free falling in a gravitational field and floating in deep space.
This is something we are familiar with because of pictures of astronauts on the International Space Station. Their noticeable weightlessness is not a result of their distance from Earth - gravity at the altitude of the station is 90% that of the gravity on Earth's surface - but is rather due to the fact that the orbiting station and the astronauts inside are freely moving through Earth's gravitational field.
Likewise, in this study the small black hole that falls into a much larger one cannot tell this fall apart from another situation in which it is floating alone in space, thus allowing the description of the phenomenon to be greatly simplified.
Roberto Emparan and Marina Martínez have utilised geometric elements in their study in order to describe the event horizon. Specifically, the horizon is obtained by plotting null geodesic lines on the so-called Schwarzschild metric, the solution to the field equations posed by Einstein for describing the gravitation field of a black hole.
According to the authors, these results make it easy to identify many geometric properties of the event horizon at the moment the two black holes join together. More importantly, "the results indicate the existence of a universal, general behaviour that occurs when two black holes come into contact with each other in any part of the universe".
Roberto Emparan and Marina Martínez are the authors of the paper titled "Exact Event Horizon of a Black Hole Merger", published inClassical and Quantum Gravity33 - Number 15, 2016. DOI: 10.1088/0264-9381/33/15/155003.
NCI continues to lead Australian HPC capabilities with adoption of cutting-edge Intel processors ...
D-Wave Systems previews 2000-qubit quantum system ...
First quantum photonic circuit with an electrically driven light source ...
Fortissimo has launched 2nd Open Call for proposals ...
STFC Computers get to the heart of the matter ...
Rob van Nieuwpoort, professor by special appointment of Efficient Computing for eScience ...
VTT Centre for Nuclear Safety inaugurated ...
Allinea launches CUDA 8 support to enable code development for newest NVIDIA GPU technology ...
China endeavours to build a Big Data 'Smart Ocean' ...
NetSpeed releases Gemini 3.0 cache-coherent NoC IP to supercharge heterogeneous SoC designs ...
Quantum provides Petascale data storage and management for major European research institutions ...
Introducing Xavier, the NVIDIA AI supercomputer for the future of autonomous transporation ...
Penguin Computing to deliver scalable enterprise storage for HPC, Big Data and VM ...
Computer engineers boost app speeds by more than 9 percent ...
Hartree Centre presents at International Industrial Supercomputing Workshop ...
Mapping the electric underground ...
IBM Foundation collaborates with AFT and education leaders to use Watson to help teachers ...
Crosstalk analysis of biological networks for improved pathway annotation ...
How to merge two black holes in a simple way ...
Nijmegen provides solution for secure processing of patient data ...
Microsoft unveils new offerings to empower IT and drive digital transformation ...
Eurofibers Secure Cloud Connect service provides safe access to the Cloud ...
Penguin Computing announces OpenPOWER server platform and go-to-market partner Mark III systems ...
Clarient Global adopts IBM Cloud and VMware for enhanced private Cloud capabilities ...