Back to Table of contents

Primeur weekly 2016-10-10

Exascale supercomputing

The incredible shrinking particle accelerator ...

Brookhaven Lab to play major role in 2 DOE exascale computing application projects ...

Quantum computing

More stable qubits in perfectly normal silicon ...

Focus on Europe

RSC supercomputers go West ...

Hardware

Allinea tools play vital role in advancing computational research at the VSC, Austria's largest HPC facility ...

Smallest transistor ever ...

Turning to the brain to reboot computing ...

Complex materials can self-organize into circuits, may form basis for multifunction chips ...

Wireless data centre on a chip aims to cut energy use ...

Adapteva announces 28nm 64-core Epiphany-IV microprocessor chip ...

SGI introduces unique scale-out solution for SAP HANA that protects investments when moving to real-time business ...

Applications

Clemson University scientists receive $1.8 million grant to combat Type 2 diabetes ...

Climate change intensifies night-time storms over Lake Victoria ...

Computer simulations explore how Alzheimer's disease starts ...

Rice University lab explores cement's crystalline nature to boost concrete performance ...

Rice University researchers say 2D boron may be best for flexible electronics ...

Large animals, such as the imperious African elephant, most vulnerable to impact of human expansion ...

Computer simulation finds dangerous molecule activity for ageing ...

Tornadogenesis ...

As hurricane heads up coast, a RENCI supercomputer swings into action ...

New drug candidate may reduce deficits in Parkinson's disease ...

XSEDE allocations awarded to 155 research teams across U.S. ...

OSC part of NSF-funded consortium for advancing research computing practices ...

NCSA awarded NSF grant to expand computational science education in food, energy, and water ...

Crosstalk analysis of biological networks for improved pathway annotation ...

The Cloud

Nimbix collaborates with IBM and NVIDIA to launch powerful GPU Cloud offering ...

Rice University researchers say 2D boron may be best for flexible electronics


When grown on silver, the two-dimensional form of boron, which is called borophene, takes on corrugations. The metallic material may be suitable for use in stretchable, bendable electronics. Credit: Zhuhua Zhang/Rice University.
4 Oct 2016 Houston - Though they're touted as ideal for electronics, two-dimensional materials like graphene may be too flat and hard to stretch to serve in flexible, wearable devices. "Wavy" borophene might be better, according to Rice University scientists.

The Rice lab of theoretical physicist Boris Yakobson and experimental collaborators observed examples of naturally undulating, metallic borophene, an atom-thick layer of boron, and suggested that transferring it onto an elastic surface would preserve the material's stretchability along with its useful electronic properties.

Highly conductive graphene has promise for flexible electronics, Boris Yakobson said, but it is too stiff for devices that also need to stretch, compress or even twist. But borophene deposited on a silver substrate develops nanoscale corrugations. Weakly bound to the silver, it could be moved to a flexible surface for use.

Rice collaborated with experimentalists at Argonne National Laboratory and Northwestern University to study borophene, which has been made in small quantities. Under the microscope, borophene displays corrugations that demonstrate its wavy nature, meaning it can be highly stretched once removed from the substrate, or reattached to a soft one, Boris Yakobson said.

The Rice group builds computer simulations to analyze the properties of materials from the atoms up. Simulations by first author Zhuhua Zhang, a postdoctoral researcher in Boris Yakobson's group, showed that hexagonal vacancies in borophene help soften the material to facilitate its corrugated form.

"Borophene is metallic in its typical state, with strong electron-phonon coupling to support possible superconductivity, and a rich band structure that contains Dirac cones, as in graphene", Boris Yakobson stated.

There is a hitch: Borophene needs the underlying structure to make it wavy. When grown on a featureless surface, its natural form resembles graphene, the flat, chicken-wire arrays of carbon atoms. Zhuhua Zhang said borophene is better seen as a triangular lattice with periodic arrays of hexagonal vacancies.

Borophene prefers to be flat because that's where its energy is lowest, Boris Yakobson said. But surprisingly, when grown on silver, borophene adopts its accordion-like form while silver reconstructs itself to match. The corrugation can be retained by "re-gluing" boron onto another substrate.

"This wavy conformation so far seems unique due to the exceptional structural flexibility and particular interactions of borophene with silver, and may be initially triggered by a slight compression in the layer when a bit too many boron atoms get onto the surface", Zhuhua Zhang stated.

The research appears in the American Chemical Society journal Nano Letters .

Co-authors of the paper are Rice alumnus Zhili Hu, Andrew Jacob Mannix and Brian Kiraly of Argonne National Laboratory and Northwestern; Nathan Guisinger of Argonne National Laboratory and Mark Hersam of Northwestern.

The Department of Energy, the Office of Naval Research and the National Science Foundation (NSF) supported the research. The researchers utilized the XSEDE and NSF-supported DAVinCI supercomputer, both administered by Rice's Center for Research Computing and procured in a partnership with Rice's Ken Kennedy Institute for Information Technology.

Source: Rice University

Back to Table of contents

Primeur weekly 2016-10-10

Exascale supercomputing

The incredible shrinking particle accelerator ...

Brookhaven Lab to play major role in 2 DOE exascale computing application projects ...

Quantum computing

More stable qubits in perfectly normal silicon ...

Focus on Europe

RSC supercomputers go West ...

Hardware

Allinea tools play vital role in advancing computational research at the VSC, Austria's largest HPC facility ...

Smallest transistor ever ...

Turning to the brain to reboot computing ...

Complex materials can self-organize into circuits, may form basis for multifunction chips ...

Wireless data centre on a chip aims to cut energy use ...

Adapteva announces 28nm 64-core Epiphany-IV microprocessor chip ...

SGI introduces unique scale-out solution for SAP HANA that protects investments when moving to real-time business ...

Applications

Clemson University scientists receive $1.8 million grant to combat Type 2 diabetes ...

Climate change intensifies night-time storms over Lake Victoria ...

Computer simulations explore how Alzheimer's disease starts ...

Rice University lab explores cement's crystalline nature to boost concrete performance ...

Rice University researchers say 2D boron may be best for flexible electronics ...

Large animals, such as the imperious African elephant, most vulnerable to impact of human expansion ...

Computer simulation finds dangerous molecule activity for ageing ...

Tornadogenesis ...

As hurricane heads up coast, a RENCI supercomputer swings into action ...

New drug candidate may reduce deficits in Parkinson's disease ...

XSEDE allocations awarded to 155 research teams across U.S. ...

OSC part of NSF-funded consortium for advancing research computing practices ...

NCSA awarded NSF grant to expand computational science education in food, energy, and water ...

Crosstalk analysis of biological networks for improved pathway annotation ...

The Cloud

Nimbix collaborates with IBM and NVIDIA to launch powerful GPU Cloud offering ...