Back to Table of contents

Primeur weekly 2016-10-10

Exascale supercomputing

The incredible shrinking particle accelerator ...

Brookhaven Lab to play major role in 2 DOE exascale computing application projects ...

Quantum computing

More stable qubits in perfectly normal silicon ...

Focus on Europe

RSC supercomputers go West ...

Hardware

Allinea tools play vital role in advancing computational research at the VSC, Austria's largest HPC facility ...

Smallest transistor ever ...

Turning to the brain to reboot computing ...

Complex materials can self-organize into circuits, may form basis for multifunction chips ...

Wireless data centre on a chip aims to cut energy use ...

Adapteva announces 28nm 64-core Epiphany-IV microprocessor chip ...

SGI introduces unique scale-out solution for SAP HANA that protects investments when moving to real-time business ...

Applications

Clemson University scientists receive $1.8 million grant to combat Type 2 diabetes ...

Climate change intensifies night-time storms over Lake Victoria ...

Computer simulations explore how Alzheimer's disease starts ...

Rice University lab explores cement's crystalline nature to boost concrete performance ...

Rice University researchers say 2D boron may be best for flexible electronics ...

Large animals, such as the imperious African elephant, most vulnerable to impact of human expansion ...

Computer simulation finds dangerous molecule activity for ageing ...

Tornadogenesis ...

As hurricane heads up coast, a RENCI supercomputer swings into action ...

New drug candidate may reduce deficits in Parkinson's disease ...

XSEDE allocations awarded to 155 research teams across U.S. ...

OSC part of NSF-funded consortium for advancing research computing practices ...

NCSA awarded NSF grant to expand computational science education in food, energy, and water ...

Crosstalk analysis of biological networks for improved pathway annotation ...

The Cloud

Nimbix collaborates with IBM and NVIDIA to launch powerful GPU Cloud offering ...

Complex materials can self-organize into circuits, may form basis for multifunction chips


An ORNL study found that complex oxide materials can self-organize into electrical circuits, which creates the possibility for new types of computer chips. Credit: Oak Ridge National Laboratory.
4 Oct 2016 Oak Ridge - Researchers studying the behaviour of nanoscale materials at the Department of Energy's Oak Ridge National Laboratory (ORNL) have uncovered remarkable behaviour that could advance microprocessors beyond today's silicon-based chips. The study, featured on the cover of Advanced Electronic Materials, shows that a single crystal complex oxide material, when confined to micro- and nanoscales, can act like a multi-component electrical circuit.

The study, featured on the cover ofAdvanced Electronic Materials, shows that a single crystal complex oxide material, when confined to micro- and nanoscales, can act like a multi-component electrical circuit. This behaviour stems from an unusual feature of certain complex oxides called phase separation, in which tiny regions in the material exhibit vastly different electronic and magnetic properties.

It means individual nanoscale regions in complex oxide materials can behave as self-organized circuit elements, which could support new multifunctional types of computing architectures.

"Within a single piece of material, there are coexisting pockets of different magnetic and/or electronic behaviours", stated ORNL's Zac Ward, the study's corresponding author. "What was interesting in this study was that we found we can use those phases to act like circuit elements. The fact that it is possible to also move these elements around offers the intriguing opportunity of creating rewritable circuitry in the material."

Because the phases respond to both magnetic and electrical fields, the material can be controlled in multiple ways, which creates the possibility for new types of computer chips.

"It's a new way of thinking about electronics, where you don't just have electrical fields switching off and on for your bits", Zac Ward stated. "This is not going for raw power. It's looking to explore completely different approaches towards multifunctional architectures where integration of multiple outside stimuli can be done in a single material."

As the computing industry looks to move past the limits of silicon-based chips, the ORNL proof-of-principle experiment shows that phase separated materials could be a way beyond the "one-chip-fits-all" approach. Unlike a chip that performs only one role, a multifunctional chip could handle several inputs and outputs that are tailored to the needs of a specific application.

"Typically you would need to link several different components together on a computer board if you wanted access to multiple outside senses", Zac Ward stated. "One big difference in our work is that we show certain complex materials already have these components built in, which may cut down on size and power requirements."

The researchers demonstrated their approach on a material called LPCMO, but Zac Ward noted that other phase-separated materials have different properties that engineers could tap into.

"The new approach aims to increase performance by developing hardware around intended applications", he stated. "This means that materials and architectures driving supercomputers, desktops, and smart phones, which each have very different needs, would no longer be forced to follow a one-chip-fits-all approach."

The study is published as " Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials ". Coauthors are Andreas Herklotz, Hangwen Guo, Anthony Wong, Ho Nyung Lee, Philip Rack and Thomas (Zac) Ward.

The work was supported by DOE's Office of Science and used resources at the ORNL's Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

Source: DOE/Oak Ridge National Laboratory

Back to Table of contents

Primeur weekly 2016-10-10

Exascale supercomputing

The incredible shrinking particle accelerator ...

Brookhaven Lab to play major role in 2 DOE exascale computing application projects ...

Quantum computing

More stable qubits in perfectly normal silicon ...

Focus on Europe

RSC supercomputers go West ...

Hardware

Allinea tools play vital role in advancing computational research at the VSC, Austria's largest HPC facility ...

Smallest transistor ever ...

Turning to the brain to reboot computing ...

Complex materials can self-organize into circuits, may form basis for multifunction chips ...

Wireless data centre on a chip aims to cut energy use ...

Adapteva announces 28nm 64-core Epiphany-IV microprocessor chip ...

SGI introduces unique scale-out solution for SAP HANA that protects investments when moving to real-time business ...

Applications

Clemson University scientists receive $1.8 million grant to combat Type 2 diabetes ...

Climate change intensifies night-time storms over Lake Victoria ...

Computer simulations explore how Alzheimer's disease starts ...

Rice University lab explores cement's crystalline nature to boost concrete performance ...

Rice University researchers say 2D boron may be best for flexible electronics ...

Large animals, such as the imperious African elephant, most vulnerable to impact of human expansion ...

Computer simulation finds dangerous molecule activity for ageing ...

Tornadogenesis ...

As hurricane heads up coast, a RENCI supercomputer swings into action ...

New drug candidate may reduce deficits in Parkinson's disease ...

XSEDE allocations awarded to 155 research teams across U.S. ...

OSC part of NSF-funded consortium for advancing research computing practices ...

NCSA awarded NSF grant to expand computational science education in food, energy, and water ...

Crosstalk analysis of biological networks for improved pathway annotation ...

The Cloud

Nimbix collaborates with IBM and NVIDIA to launch powerful GPU Cloud offering ...