Back to Table of contents

Primeur weekly 2015-10-26

Special

DZ Bank believes in Cloud computing but has to move with caution ...

Peter Coveney's views on the Virtual Human, the Human Brain Project, the medical practice and curriculum, and the interrelation of supercomputing and data storage ...

Focus

Exascale: not simply a matter of re-writing the applications and more parallelism ...

Exascale supercomputing

New report on energy-efficient computing ...

Photons open the gateway for quantum networks ...

Quantum computing

Loophole-free Bell test TU Delft crowns 80-years-old debate on nature of reality: Einsteins "spooky action" is real ...

Focus on Europe

IBM, UK STFC Hartree Centre, NVIDIA and Mellanox launch high performance computing POWER Acceleration and Design Center for business ...

Middleware

Bright Computing's Panos Labropoulos to speak at Amsterdam Spark Summit ...

Rogue Wave Software acquires enterprise PHP expert Zend ...

SGI exceeds 200 Terabyte milestone in total systems running SAP HANA ...

Hardware

Nor-Tech innovates ruggedized portable custom supercomputer for CAE and other applications ...

Comet: A supercomputer for the 'long tail' of science ...

U.S. Army unveils Excalibur, one of the world's top 20 supercomputers ...

Supermicro's new X11 UP solutions with highest performance and efficiency support latest Intel Xeon processor E3-1200 v5 family ...

New custom-designed storage system by DDN boosts Intel Omni-Path fabric speed in HPC, web and Cloud workflows by 100 percent ...

Department of Energy’s National Nuclear Security Administration selects Penguin Computing's Tundra extreme scale solution for National Labs ...

Applications

IBM expands data discovery and Q&A power of Watson Analytics ...

Cray's high-density GPU system sets new performance standard for ECHELON reservoir simulation software ...

New SDSC award provides easy path to supercomputing for neuroscientists ...

UC San Diego/SDSC study uncovers mechanism to block a cancer pathway ...

Utah researchers develop software to better understand brain's network of neurons ...

DrugDiscovery@TACC portal helps researchers worldwide with drug therapeutics ...

Supercomputing helps ecologists overturn popular theory ...

The Cloud

EMC and VMware reveal new Cloud services business ...

Dell introduces industry-first hybrid Cloud system with bold payment structure to simplify and minimize risks of Cloud adoption ...

Photons open the gateway for quantum networks

Alisa Javadi, a postdoc in the Quantum Photonic research group, has worked with the experiments in the laboratory at the Niels Bohr Institute, University of Copenhagen. Credit: Ola Jakup Joensen, Niels Bohr Institute, University of Copenhagen23 Oct 2015 Copenhagen - There is tremendous potential for new information technology based on light (photons). Photons (light particles) are very well suited for carrying information and quantum technology based on photons - called quantum photonics, will be able to hold much more information than current computer technology. But in order to create a network with photons, you need a photon contact, a kind of transistor that can control the transport of photons in a circuit. Researchers at the Niels Bohr Institute in collaboration with researchers from the Korea Institute of Science and Technology have managed to create such a contact. The results are published in the scientific journalNature Communications.

Quantum information can be sent optically, that is to say, using light, and the signal is comprised of photons, which is the smallest component (a quantum) of a light pulse. Quantum information is located in whichever path the photon is sent along - it can, for example, be sent to the right or to the left on a semi-transparent mirror. It can be compared to the use of bits made up of 0s and 1s in the world of conventional computers. But a quantum bit is more than a classical bit, since it is both a 0 and a 1 at the same time and it cannot be read without it being detected, as it is only a single photon. In addition, quantum technology can be used to store far more information than conventional computer technology, so the technology has much greater potential for future information technology.

Light normally spreads in all directions. But in order to develop quantum technology based on light, you need to be able to control light down to the individual photons. Researchers in the Quantum Photonic research group at the Niels Bohr Institute are working on this and to do so, they use an optical chip embedded with a so-called quantum dot. The optical chip is made up of an extremely small photonic crystal, which is 10 microns across (1 micron is a thousandth of a millimetre) and has a thickness of 160 nanometers (1 nanometer is a thousandth of a micron). Embedded in the middle of the chip is a so-called quantum dot, which is comprised of a collection of atoms.

"We have developed the photonic chip so that the quantum dot emits a single photon at a time and we can control the photon's direction. Our big new achievement is that we can use the quantum dot as a contact for the photons - a kind of transistor. It is an important component for creating a complex network of photons", explained Peter Lodahl, professor and head of the Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen.

The experiments are carried out in the research group's laboratories, which located in the basement of the Niels Bohr Institute so that there are no tremors from the road or disruptive ambient light.

They use a laser to produce the photons in the experiment. If the laser is fully dimmed, a single photon is released. If the intensity is increased, there is a greater chance of 2 or more photons at the same time. The number of photons is important for the result.

"If we send a single photon into the quantum dot, it will be thrown back - the gateway is closed. But if we send two photons, the situation changes fundamentally - the gateway is opened and the two photons become entangled and are sent onwards", explained Alisa Javadi, who is a postdoc in the research group and has worked with the experiments in the laboratory at the Niels Bohr Institute.

So the quantum dot works as a photon contact and this is an important component when you want to build complex quantum photonic circuits on a large scale.
Source: University of Copenhagen - Niels Bohr Institute

Back to Table of contents

Primeur weekly 2015-10-26

Special

DZ Bank believes in Cloud computing but has to move with caution ...

Peter Coveney's views on the Virtual Human, the Human Brain Project, the medical practice and curriculum, and the interrelation of supercomputing and data storage ...

Focus

Exascale: not simply a matter of re-writing the applications and more parallelism ...

Exascale supercomputing

New report on energy-efficient computing ...

Photons open the gateway for quantum networks ...

Quantum computing

Loophole-free Bell test TU Delft crowns 80-years-old debate on nature of reality: Einsteins "spooky action" is real ...

Focus on Europe

IBM, UK STFC Hartree Centre, NVIDIA and Mellanox launch high performance computing POWER Acceleration and Design Center for business ...

Middleware

Bright Computing's Panos Labropoulos to speak at Amsterdam Spark Summit ...

Rogue Wave Software acquires enterprise PHP expert Zend ...

SGI exceeds 200 Terabyte milestone in total systems running SAP HANA ...

Hardware

Nor-Tech innovates ruggedized portable custom supercomputer for CAE and other applications ...

Comet: A supercomputer for the 'long tail' of science ...

U.S. Army unveils Excalibur, one of the world's top 20 supercomputers ...

Supermicro's new X11 UP solutions with highest performance and efficiency support latest Intel Xeon processor E3-1200 v5 family ...

New custom-designed storage system by DDN boosts Intel Omni-Path fabric speed in HPC, web and Cloud workflows by 100 percent ...

Department of Energy’s National Nuclear Security Administration selects Penguin Computing's Tundra extreme scale solution for National Labs ...

Applications

IBM expands data discovery and Q&A power of Watson Analytics ...

Cray's high-density GPU system sets new performance standard for ECHELON reservoir simulation software ...

New SDSC award provides easy path to supercomputing for neuroscientists ...

UC San Diego/SDSC study uncovers mechanism to block a cancer pathway ...

Utah researchers develop software to better understand brain's network of neurons ...

DrugDiscovery@TACC portal helps researchers worldwide with drug therapeutics ...

Supercomputing helps ecologists overturn popular theory ...

The Cloud

EMC and VMware reveal new Cloud services business ...

Dell introduces industry-first hybrid Cloud system with bold payment structure to simplify and minimize risks of Cloud adoption ...