Back to Table of contents

Primeur weekly 2019-09-09

Quantum computing

New quantum project aims for ultra-secure communication in Europe ...

Schrödinger and Qu & Co announce collaboration to advance quantum mechanical computations on quantum computers ...

Spreading light over quantum computers ...

Focus on Europe

AUBASS' AUTOSAR Adaptive Platform solution ported on Kalray's intelligent processor ...

eScience Center takes part in hackathon to improve tools for analysis of internet therapies ...

At the edge of chaos, powerful new electronics could be created ...

Middleware

2CRSI becomes a Bright reseller in the USA, Europe and Middle East ...

NERSC and ECP host OpenMP Hackathon for energy-efficient architectures ...

Hardware

Shell and PDENH are investing in Dutch sustainable data centre technology scale-up Asperitas ...

Konstantinos Orginos awarded time on world's fastest supercomputer to study Lattice QCD ...

GRC teams with NVIDIA to provide fully optimized liquid-immersion cooled system to support the Texas Advanced Computing Center's Frontera supercomputer ...

Mellanox introduces new LinkX 200G & 400G cables & transceivers at CIOE, Shenzhen, China and ECOC, Dublin, Ireland 2019 ...

Texas boosts U.S. science with fastest academic supercomputer in the world ...

New insulation technique paves the way for more powerful and smaller chips ...

WekaIO awarded three patents ...

Intel Xeon Scalable processors drive advanced research in world's fastest academic supercomputer ...

Applications

Rochester Institute of Technology researchers use Frontera supercomputer to simulate neutron star mergers ...

Researchers use TACC's new Frontera supercomputer to simulate viruses and cells ...

Teaching Neural Networks Quantum Chemistry ...

Building a sunnier energy future ...

Researchers apply increasing computational power to develop predictive models and create patient-specific treatment plans ...

Researchers will simulate high speed turbulent flows on Frontera supercomputer ...

U.S. National Science Foundation awards San Diego Supercomputer Center and partners $5,9 million to host EarthCube Office ...

Researchers uncover role of earthquake motions in triggering a 'surprise' tsunami ...

Artificial Intelligence for Physics Research ...

NCSA machine learning pipeline provides insight into energy-efficient home improvement programmes ...

Eight projects to gain early access to the Frontier supercomputer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire ...

PPG selected for DOE partnership to speed development, testing of adhesives for lightweight vehicles ...

Sum of three cubes for 42 finally solved - using real life planetary computer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire


Berkeley Lab researchers built a numerical model of the Cosumnes River watershed, extending from the Sierra Nevada mountains to the Central Valley, to study post-wildfire changes to the hydrologic cycle. Credit: Berkeley Lab.
4 Sep 2019 Berkeley - In recent years, wildfires in the western United States have occurred with increasing frequency and scale. Climate change scenarios in California predict prolonged periods of drought with potential for conditions even more amenable to wildfires. The Sierra Nevada Mountains provide up to 70% of the state's water resources, yet there is little known on how wildfires will impact water resources in the future.
Berkeley Lab researchers found that wildfires led to non-linear and bi-directional (positive and negative) changes in surface water and groundwater, even outside of the simulated burn scar areas of the Cosumnes River watershed. Credit: Berkeley Lab.

A new study by scientists at Lawrence Berkeley National Laboratory uses a numerical model of an important watershed in California to shed light on how wildfires can affect large-scale hydrological processes, such as stream flow, groundwater levels, and snowpack and snowmelt. The team found that post-wildfire conditions resulted in greater winter snowpack and subsequently greater summer runoff as well as increased groundwater storage.

The study, " Watershed Dynamics Following Wildfires: Nonlinear Feedbacks and Implications on Hydrologic Responses ", was published recently in the journalHydrological Processes.

"We wanted to understand how changes at the land surface can propagate to other locations of the watershed", stated the study's lead author, Fadji Maina, a postdoctoral fellow in Berkeley Lab's Earth & Environmental Sciences Area. "Previous studies have looked at individual processes. Our model ties it together and looks at the system holistically."

The researchers modeled the Cosumnes River watershed, which extends from the Sierra Nevadas, starting just southwest of Lake Tahoe, down to the Central Valley, ending just north of the Sacramento Delta. "It's pretty representative of many watersheds in the state", stated Berkeley Lab researcher Erica Woodburn, co-author of the study. "We had previously constructed this model to understand how watersheds in the state might respond to climate change extremes. In this study, we used the model to numerically explore how post-wildfire land cover changes influenced water partitioning in the landscape over a range of spatial and temporal resolutions."

Using high-performance computing to simulate watershed dynamics over a period of one year, and assuming a 20% burn area based on historical occurrences, the study allowed them to identify the regions in the watershed that were most sensitive to wildfires conditions, as well as the hydrologic processes that are most affected.

Some of the findings were counterintuitive, the researchers said. For example, evapotranspiration, or the loss of water to the atmosphere from soil, leaves, and through plants, typically decreases after wildfire. However, some regions in the Berkeley Lab model experienced an increase due to changes in surface water runoff patterns in and near burn scars.

"After a fire there are fewer trees, which leads to an expectation of less evapotranspiration", Fadji Maina stated. "But in some locations we actually saw an increase. It's because the fire can change the subsurface distribution of groundwater. So there are non-linear and propagating impacts of changing the land cover that leads to opposite trends than what you might expect from altering the land cover."

Changing the land cover leads to a change in snowpack dynamics. "That will change how much and when the snow melts and feeds the rivers", Erica Woodburn stated. "That in turn will impact groundwater. It's a cascading effect. In the model we quantify how much it moves in space and time, which is something you can only do accurately with the type of high resolution model we've constructed."

She added: "The changes to stream flow and groundwater levels following a wildfire are especially important metrics for water management stakeholders, who largely rely on this natural resource but have little way of understanding how they might be impacted given wildfires in the future. The study is really illustrative of the integrative nature of hydrologic processes across the Sierra Nevada-Central Valley interface in the state."

Berkeley Lab researchers are also studying how the 2017 Sonoma County wildfires have affected the region's water systems, including the biogeochemistry of the Russian River watershed. "Developing a predictive understanding of the influence of wildfire on both water availability and water quality is critically important for California water resiliency", stated Susan Hubbard, the Associate Laboratory Director of Earth and Environmental Sciences at Berkeley Lab. "High-performance computing allows our scientists to numerically explore how complex watersheds respond to a range of future scenarios, and the associated downgradient impacts that are important for water management."

This research was funded by Berkeley Lab's Laboratory Directed Research and Development (LDRD) programme. The study used supercomputing resources at the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab to run the model. NERSC is a DOE Office of Science user facility.
Source: Lawrence Berkeley National Laboratory

Back to Table of contents

Primeur weekly 2019-09-09

Quantum computing

New quantum project aims for ultra-secure communication in Europe ...

Schrödinger and Qu & Co announce collaboration to advance quantum mechanical computations on quantum computers ...

Spreading light over quantum computers ...

Focus on Europe

AUBASS' AUTOSAR Adaptive Platform solution ported on Kalray's intelligent processor ...

eScience Center takes part in hackathon to improve tools for analysis of internet therapies ...

At the edge of chaos, powerful new electronics could be created ...

Middleware

2CRSI becomes a Bright reseller in the USA, Europe and Middle East ...

NERSC and ECP host OpenMP Hackathon for energy-efficient architectures ...

Hardware

Shell and PDENH are investing in Dutch sustainable data centre technology scale-up Asperitas ...

Konstantinos Orginos awarded time on world's fastest supercomputer to study Lattice QCD ...

GRC teams with NVIDIA to provide fully optimized liquid-immersion cooled system to support the Texas Advanced Computing Center's Frontera supercomputer ...

Mellanox introduces new LinkX 200G & 400G cables & transceivers at CIOE, Shenzhen, China and ECOC, Dublin, Ireland 2019 ...

Texas boosts U.S. science with fastest academic supercomputer in the world ...

New insulation technique paves the way for more powerful and smaller chips ...

WekaIO awarded three patents ...

Intel Xeon Scalable processors drive advanced research in world's fastest academic supercomputer ...

Applications

Rochester Institute of Technology researchers use Frontera supercomputer to simulate neutron star mergers ...

Researchers use TACC's new Frontera supercomputer to simulate viruses and cells ...

Teaching Neural Networks Quantum Chemistry ...

Building a sunnier energy future ...

Researchers apply increasing computational power to develop predictive models and create patient-specific treatment plans ...

Researchers will simulate high speed turbulent flows on Frontera supercomputer ...

U.S. National Science Foundation awards San Diego Supercomputer Center and partners $5,9 million to host EarthCube Office ...

Researchers uncover role of earthquake motions in triggering a 'surprise' tsunami ...

Artificial Intelligence for Physics Research ...

NCSA machine learning pipeline provides insight into energy-efficient home improvement programmes ...

Eight projects to gain early access to the Frontier supercomputer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire ...

PPG selected for DOE partnership to speed development, testing of adhesives for lightweight vehicles ...

Sum of three cubes for 42 finally solved - using real life planetary computer ...