Back to Table of contents

Primeur weekly 2019-09-09

Quantum computing

New quantum project aims for ultra-secure communication in Europe ...

Schrödinger and Qu & Co announce collaboration to advance quantum mechanical computations on quantum computers ...

Spreading light over quantum computers ...

Focus on Europe

AUBASS' AUTOSAR Adaptive Platform solution ported on Kalray's intelligent processor ...

eScience Center takes part in hackathon to improve tools for analysis of internet therapies ...

At the edge of chaos, powerful new electronics could be created ...

Middleware

2CRSI becomes a Bright reseller in the USA, Europe and Middle East ...

NERSC and ECP host OpenMP Hackathon for energy-efficient architectures ...

Hardware

Shell and PDENH are investing in Dutch sustainable data centre technology scale-up Asperitas ...

Konstantinos Orginos awarded time on world's fastest supercomputer to study Lattice QCD ...

GRC teams with NVIDIA to provide fully optimized liquid-immersion cooled system to support the Texas Advanced Computing Center's Frontera supercomputer ...

Mellanox introduces new LinkX 200G & 400G cables & transceivers at CIOE, Shenzhen, China and ECOC, Dublin, Ireland 2019 ...

Texas boosts U.S. science with fastest academic supercomputer in the world ...

New insulation technique paves the way for more powerful and smaller chips ...

WekaIO awarded three patents ...

Intel Xeon Scalable processors drive advanced research in world's fastest academic supercomputer ...

Applications

Rochester Institute of Technology researchers use Frontera supercomputer to simulate neutron star mergers ...

Researchers use TACC's new Frontera supercomputer to simulate viruses and cells ...

Teaching Neural Networks Quantum Chemistry ...

Building a sunnier energy future ...

Researchers apply increasing computational power to develop predictive models and create patient-specific treatment plans ...

Researchers will simulate high speed turbulent flows on Frontera supercomputer ...

U.S. National Science Foundation awards San Diego Supercomputer Center and partners $5,9 million to host EarthCube Office ...

Researchers uncover role of earthquake motions in triggering a 'surprise' tsunami ...

Artificial Intelligence for Physics Research ...

NCSA machine learning pipeline provides insight into energy-efficient home improvement programmes ...

Eight projects to gain early access to the Frontier supercomputer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire ...

PPG selected for DOE partnership to speed development, testing of adhesives for lightweight vehicles ...

Sum of three cubes for 42 finally solved - using real life planetary computer ...

At the edge of chaos, powerful new electronics could be created


The similarity between doubling in domains in the barium titanate material (left) and a bifurcating pyramidal neuron. Credit: Left panel: Beatriz Noheda, right panel: Ramón y Cajal.
3 Sep 2019 Groningen - A phenomenon that is well known from chaos theory was observed in a material for the first time ever, by scientists from the University of Groningen. A structural transition in the ferro-elastic material barium titanate, caused by an increase or decrease in temperature, resembles the periodic doubling seen in non-linear dynamical systems. This 'spatial chaos' in a material was first predicted in 1985 and could be used in applications such as adaptable neuromorphic electronics.

The results were published inPhysical Review Letterson 22 August, 2019.

A team of physicists at the University of Groningen, led by Professor of Functional Nanomaterials Beatriz Noheda, made their observation in thin films of barium titanate (BaTiO3), a ferro-elastic material. Ferroic materials are characterized by their ordered structure, in shape (ferro-elastic), charge (ferro-electric) or magnetic moment (ferromagnetic), for example. "These materials are always crystals in which the atoms are arranged with characteristic symmetries", Beatriz Noheda explained.

Electric or magnetic dipoles are aligned within domains in the crystals. "However, the dipoles could be pointing up or down, as both states are equivalent." As a result, crystals of these materials will have both types of domains. The same goes for ferro-elastic materials, best known for their shape memory. In this case, however, the situation is a bit more complicated, Beatriz Noheda explained: "The unit cells in these crystals are elongated, which means that domains of the different unit cells do not easily match in shape. This creates an elastic strain that reduces the crystal stability."

The crystal can improve the stability naturally by forming twins of domains, which are slightly tilted in opposite directions to relieve the stress. The result is a material in which these twinned pairs form alternating domains, with a fixed periodicity. Heating causes a phase change in the material, in which both the direction and the periodicity of the domain walls is altered. "The question was how this change takes place", stated Beatriz Noheda.

Increasing the temperature increases the disorder (entropy) in the material. Thus, a tug-of-war starts between the intrinsic tendency for order and the increasing entropy. It is this process that was observed for the first time by the Groningen team, using atomic force microscopy. When heating samples from 25°C to 70°C, a phase change takes place, altering the position of domain walls. When the transition starts, domain walls of the new phase appear gradually and both phases exist together at intermediate temperatures (30°C to 50°C). "This doesn't happen in a random way, but by repeated doubling", stated Beatriz Noheda. Cooling the material reduces the periodicity of the domains by repeated halving.

"This doubling or halving is well known in non-linear dynamical systems, when they are close to the transition to chaotic behaviour", explained Beatriz Noheda, "However, it had never been observed in spatial domains, but only in time periods." The resemblance between the behaviour of the thin films and non-linear systems suggests that the material is itself at the edge of chaos during heating. "This is an interesting observation, because it means that the response of the system is highly dependent on initial conditions. Thus, we could get very diverse responses following a small change in these conditions."

The paper includes theoretical calculations from colleagues at Penn State University (US) and the University of Cambridge (UK), which show that the behaviour observed in the ferro-elastic barium titanate is generic for ferroic materials. Thus, a ferro-electric material at the edge of chaos could give a highly diverse response over a small range of input voltages. "That is exactly what you want, to create the type of adaptable response needed for neuromorphic computing, such as reservoir computing, which benefits from non-linear systems that can produce highly diverse input-output sets."

The paper inPhysical Review Lettersis a proof of principle, showing how a material can be designed to exist at the edge of chaos, where it is highly responsive. Beatriz Noheda also pointed out how the doubling of domains creates a structure similar to the bifurcating dendrites connecting the pyramidal cells in the brain. These cells play an important role in cognitive abilities. Ultimately, ferroic materials on the edge of chaos may be used to create electronic brain-like systems for complex computing.

Arnoud S. Everhardt, Silvia Damerio, Jacob A. Zorn, Silang Zhou, Neus Domingo, Gustau Catalan, Ekhard K.H. Salje, Long-Qing Chen, and Beatriz Noheda are the authors of the paper titled " Periodicity-Doubling Cascades: Direct Observation in Ferroelastic Materials ". It has been published inPhysical Review Letterson 22 August, 2019.
Source: University of Groningen

Back to Table of contents

Primeur weekly 2019-09-09

Quantum computing

New quantum project aims for ultra-secure communication in Europe ...

Schrödinger and Qu & Co announce collaboration to advance quantum mechanical computations on quantum computers ...

Spreading light over quantum computers ...

Focus on Europe

AUBASS' AUTOSAR Adaptive Platform solution ported on Kalray's intelligent processor ...

eScience Center takes part in hackathon to improve tools for analysis of internet therapies ...

At the edge of chaos, powerful new electronics could be created ...

Middleware

2CRSI becomes a Bright reseller in the USA, Europe and Middle East ...

NERSC and ECP host OpenMP Hackathon for energy-efficient architectures ...

Hardware

Shell and PDENH are investing in Dutch sustainable data centre technology scale-up Asperitas ...

Konstantinos Orginos awarded time on world's fastest supercomputer to study Lattice QCD ...

GRC teams with NVIDIA to provide fully optimized liquid-immersion cooled system to support the Texas Advanced Computing Center's Frontera supercomputer ...

Mellanox introduces new LinkX 200G & 400G cables & transceivers at CIOE, Shenzhen, China and ECOC, Dublin, Ireland 2019 ...

Texas boosts U.S. science with fastest academic supercomputer in the world ...

New insulation technique paves the way for more powerful and smaller chips ...

WekaIO awarded three patents ...

Intel Xeon Scalable processors drive advanced research in world's fastest academic supercomputer ...

Applications

Rochester Institute of Technology researchers use Frontera supercomputer to simulate neutron star mergers ...

Researchers use TACC's new Frontera supercomputer to simulate viruses and cells ...

Teaching Neural Networks Quantum Chemistry ...

Building a sunnier energy future ...

Researchers apply increasing computational power to develop predictive models and create patient-specific treatment plans ...

Researchers will simulate high speed turbulent flows on Frontera supercomputer ...

U.S. National Science Foundation awards San Diego Supercomputer Center and partners $5,9 million to host EarthCube Office ...

Researchers uncover role of earthquake motions in triggering a 'surprise' tsunami ...

Artificial Intelligence for Physics Research ...

NCSA machine learning pipeline provides insight into energy-efficient home improvement programmes ...

Eight projects to gain early access to the Frontier supercomputer ...

New Berkeley Lab study uses supercomputers to analyze hydrological changes in a California watershed following a wildfire ...

PPG selected for DOE partnership to speed development, testing of adhesives for lightweight vehicles ...

Sum of three cubes for 42 finally solved - using real life planetary computer ...