Back to Table of contents

Primeur weekly 2015-09-28

Special

Some perspectives on which approach to choose in the race towards exascale ...

System monitoring for energy-efficiency in the MontBlanc and DEEP-ER projects ...

Focus

In the following two years, 2016-2017, the European Union will spend over 150 million euro on HPC, ranging from HPC support for industry to exascale development ...

Quantum computing

D-Wave Systems announces multi-year agreement to provide its technology to Google, NASA and USRA's Quantum Artificial Intelligence Lab ...

Focus on Europe

PRACE to issue Newsletter 16 ...

Leibniz Supercomputing Centre in Garching near Munich to host 59th International HPC User Forum ...

Middleware

New support for CAMERA to develop computational mathematics for experimental facilities research ...

Hardware

Nor-Tech pioneers low-cost supercomputer solution ...

Curtiss-Wright launches new OpenHPEC Initiative to bring supercomputing software tools to embedded COTS systems ...

ADVA Optical Networking and PSNC trial 400G DCI technology in Research and Education Network ...

CENIC awarded International Networking Grant from NSF ...

Mellanox and Ixia demonstrate industry-first interoperability of 100Gb/s Ethernet platforms over 2km of optical fiber with silicon photonics transceivers ...

Applications

New 'stealth dark matter' theory may explain mystery of the universe's missing mass ...

One step closer to a new kind of computer ...

TACC supercomputers power RNA-seq analysis tools at summer bioinformatics workshop ...

LLNL joins Rensselaer Polytechnic Institute to promote industry adoption of supercomputing ...

Desika Narayanan unlocks the secrets to the brightest galaxies in the universe ...

Health care organisations select Mellanox InfiniBand-based Cloud ...

The Cloud

Dew helps ground Cloud computing ...

Computer scientist seeks stronger security shroud for the Cloud ...

Rescale and CTC announce strategic partnership to provide Cloud HPC Platform in Japan ...

System monitoring for energy-efficiency in the MontBlanc and DEEP-ER projects

16 Jul 2015 Frankfurt - During the "European Exascale Research" workshop that followed the ISC15 Conference in Frankfurt, Germany, Axel Auweter from the Leibniz Rechenzentrum talked about energy efficiency monitoring with regard to the upcoming exascale systems in the future. Axel Auweter has been involved in two projects that both started out three years ago with a blank sheet of paper. According to Axel Auweter, we cannot talk about exascale computing in terms of scalability and programmability without addressing the very essential topic of making a significant leap in energy efficiency. How do we go about it?

One of the reasonable approaches is to look at low power CPUs, particularly look at the ARM space and what is coming from the embedded mobile market. In addition, accelerators is probably a way to go. This contributes to higher throughput and higher energy efficiency.

The next thing that the project teams looked into is efficient cooling and high frequency sensors. Why would you want energy-efficient cooling, Axel Auweter asked. Energy-efficient cooling means you are improving the ability to remove the waste heat that you are producing with the machines from your hot components. If you do so, you can basically pack things tighter, you can improve density, you can improve performance which is all good for exascale.

If you improve the heat removal, you can actually run at higher inlet temperatures. You can then use year-round chiller-less cooling. All the data centres currently have large energy-hungry chillers that need to produce cold to get rid of the heat. If you can get rid of those chillers, you are already saving energy and operational costs, Axel Auweter explained.

Another advantage of having higher temperatures is that you can make better use of the waste heat in winter. There are some experiments where the teams are actually investigating heat reuse for cooling.

Ideally, you can perform single phase liquid cooling by using water. You can also perform two phase liquid cooling by using 3M Novec for instance like in the bubble bads. In the DEEP-ER project, for three of the big machines - the cluster, the booster and the small energy efficiency evaluator - the team is using aluminum coldplate capable of cooling all the components on the board with water. For the little ASIC evaluator, the team needs a quicker solution because it came quite late in the project. Here, the team uses the 3M Novec technology. This, however, is not suited for a 10 years operation lifetime.

Axel Auweter went on to talk about sensors. He showed how the team performed power monitoring in the MontBlanc project. MontBlanc has a blade architecture with 15 boards. These are interconnected through a midline. For each of these node cards the team has a power monitoring chip fully integrated that measures the power and supplies the power measuring data over digital I-square C-bus.

The team uses that high frequency data and aggregate it in an FPGA that is on the board to do some averaging. Next, the team basically forwards one second average values for each of these nodes into a board management controller. The board management controller will get back to the what is the resource of this power monitoring data.

Axel Auweter then switched over to the power consumption monitoring in the DEEP project. He showed a brief overview of the DEEP Booster node card design. The node cards have some sensors on their own. There is a board management controller which is capable of collecting all the sensors that report information of the sensors that have been put on this custom-redesigned boards.

All in all, each of these prototypes has way over 1000 sensors. The team also wanted to have additional information from sensors that are outside the system, sensors that originate from the infrastructure for cooling around these systems, integrated into the global monitoring system. Ideally, you would like to have these sensors report very high frequencies.

Typically, the standard system gives you a reading once per minute because a standard pool model is used. You have a management server that queries one sensor after another. The team needed something at higher frequencies. So ideally this requires some push model for that, explained Axel Auweter.

All this information is aggregated in this way. Both projects have their board management controllers, doing the very low level sensor acquisition. The team also created some kind of software connectors for integrating monitoring data that the team gets from elsewhere, for example IPMI protocols, a standard management protocol for servers. SNMP is another standard management protocol the team is supporting. You will also have a software component to aggregate for the information that you get from log files.

The team is using a message protocol, originated from the Internet of Things space, that is quite useful for their purpose. The team basically feeds all the information from those various sources at high frequency into a component that is called the CollectAgent from where it is being stored into a database, explained Axel Auweter.

Scalability is of course a concern. The whole system is actually designed in a fashion that you can duplicate or add database nodes and CollectAgent instances which enable you to linearly scale this entire set-up, meaning that if you are running low on the performance of this database, you can add more of the database servers for your monitoring.

Since the team uses a distributed key-value store, this still is visible to the user as if it was one single big database although it is stored in a distributed fashion. The team can implement a system where it stores the monitoring data locally, close to the centres where it is being acquired and nonetheless run global analysis on this data.

Axel Auweter concluded by giving one of the examples from the MontBlanc project: the power trace comparison of standard MPI and tuned OmpSs+OpenCL versions of the Himeno benchmark. At first the application run time was almost a hundred and thirty seconds. Afterwards the application finished much faster with a much shorter development and optimization cycle.

The solution the teams developed for both projects does scale, so when it comes to exascale more sensors will not provide more problems.

Ad Emmen

Back to Table of contents

Primeur weekly 2015-09-28

Special

Some perspectives on which approach to choose in the race towards exascale ...

System monitoring for energy-efficiency in the MontBlanc and DEEP-ER projects ...

Focus

In the following two years, 2016-2017, the European Union will spend over 150 million euro on HPC, ranging from HPC support for industry to exascale development ...

Quantum computing

D-Wave Systems announces multi-year agreement to provide its technology to Google, NASA and USRA's Quantum Artificial Intelligence Lab ...

Focus on Europe

PRACE to issue Newsletter 16 ...

Leibniz Supercomputing Centre in Garching near Munich to host 59th International HPC User Forum ...

Middleware

New support for CAMERA to develop computational mathematics for experimental facilities research ...

Hardware

Nor-Tech pioneers low-cost supercomputer solution ...

Curtiss-Wright launches new OpenHPEC Initiative to bring supercomputing software tools to embedded COTS systems ...

ADVA Optical Networking and PSNC trial 400G DCI technology in Research and Education Network ...

CENIC awarded International Networking Grant from NSF ...

Mellanox and Ixia demonstrate industry-first interoperability of 100Gb/s Ethernet platforms over 2km of optical fiber with silicon photonics transceivers ...

Applications

New 'stealth dark matter' theory may explain mystery of the universe's missing mass ...

One step closer to a new kind of computer ...

TACC supercomputers power RNA-seq analysis tools at summer bioinformatics workshop ...

LLNL joins Rensselaer Polytechnic Institute to promote industry adoption of supercomputing ...

Desika Narayanan unlocks the secrets to the brightest galaxies in the universe ...

Health care organisations select Mellanox InfiniBand-based Cloud ...

The Cloud

Dew helps ground Cloud computing ...

Computer scientist seeks stronger security shroud for the Cloud ...

Rescale and CTC announce strategic partnership to provide Cloud HPC Platform in Japan ...