Back to Table of contents

Primeur weekly 2011-09-19

Exascale supercomputing

New IBM Blue Gene/Q supercomputer for Rensselaer ...

Fujitsu Laboratories develops compact silicon photonics light source for high-bandwidth CPU interconnects ...

The future accelerated: multi-core goes mainstream, computing pushed to extremes ...

The Cloud

Cordys selected by Fujitsu as strategic platform to offer Cloud services globally ...

EMC's new Center of Excellence and Cloud Data Center powers company's Cloud computing vision ...

Two new publications provide a Cloud computing standards roadmap and reference architecture ...

Hitachi Data Systems announces acquisition of BlueArc ...

HP unveils expanded Enterprise Security Solutions for the instant-on enterprise ...

Desktop Grids

TheSkyNet launched ...

IBM and University of Antioquia co-operate to seek drug for Leishmaniasis treatment ...

EuroFlash

Barcelona Supercomouting Center triples its calculation capacity ...

ADVA Optical Networking introduces industry's first 100G Metro solution ...

Registration open for the e-IRG open workshop in Poznań 12-13 October 2011 ...

Cracow Grid Workshop 2011 to issue Call for Papers ...

USFlash

Appro to deliver 800TFLOPs supercomputer to Japan's University of Tsukuba ...

NEC bundles TotalView as standard debugger for LX series HPC cluster solutions ...

WellPoint and IBM announce agreement to put Watson to work in health care ...

UC San Diego's HPWREN aids in recent supernova discovery ...

How the Milky Way got its spiral ...

Oracle sets new world-record result on SAP Sales and Distribution-Parallel standard application benchmark ...

$13-million NSF centre to explore new ways to manipulate light at the nanoscale ...

Oracle Utilities Customer Care and Billing with Oracle Exadata Database Machine demonstrates extreme performance for utility bill processing ...

Ferro-electrics could pave way for ultra-low power computing ...

Oracle introduces Pillar Axiom Release 5 Storage System Software ...

Broadcom to acquire NetLogic Microsystems Inc., an expert in network communications processors ...

SDSC and SDSU receive NSF grant to expand computer science curriculum ...

Intel announces new SATA solid-state drive for the data centre ...

SDSC researcher co-authors new book on managing event data ...

Syncfusion Sponsoring High Performance Computing for Wall Street Conference ...

Oracle releases Oracle Solaris 10 8/11 ...

Ferro-electrics could pave way for ultra-low power computing

12 Sep 2011 Berkeley - Engineers at the University of California, Berkeley, have shown that it is possible to reduce the minimum voltage necessary to store charge in a capacitor, an achievement that could reduce the power draw and heat generation of today's electronics.

"Just like a Formula One car, the faster you run your computer, the hotter it gets. So the key to having a fast microprocessor is to make its building block, the transistor, more energy efficient", stated Asif Khan, UC Berkeley graduate student in electrical engineering and computer sciences. "Unfortunately, a transistor's power supply voltage, analogous to a car's fuel, has been stuck at 1 volt for about 10 years due to the fundamental physics of its operation. Transistors have not become as 'fuel-efficient' as they need to be to keep up with the market's thirst for more computing speed, resulting in a cumulative and unsustainable increase in the power draw of microprocessors. We think we can change that."

Asif Khan, working in the lab of Sayeef Salahuddin, UC Berkeley assistant professor of electrical engineering and computer sciences, has been leading a project since 2008 to improve the efficiency of transistors.

The researchers took advantage of the exotic characteristics of ferro-electrics, a class of material that holds both positive and negative electrical charges. Ferro-electrics hold electrical charge even when you don't apply a voltage to it. What's more, the electrical polarization in ferro-electrics can be reversed with the application of an external electrical field.

The engineers demonstrated for the first time that in a capacitor made with a ferro-electric material paired with a dielectric - an electrical insulator - the charge accumulated for a given voltage can, in effect, be amplified, a phenomenon called negative capacitance.

The team report their results in the September 12 issue of the journalApplied Physics Letters. The experiment sets the stage for a major upgrade to transistors, the on-off switch that generate the zeros and ones of a computer's binary language.

"This work is the proof-of-principle we have needed to pursue negative capacitance as a viable strategy to overcome the power draw of today's transistors", stated Sayeef Salahuddin, who first theorized the existence of negative capacitance in ferro-electric materials as a graduate student with engineering professor Supriyo Datta at Purdue University. "If we can use this to create low-power transistors without compromising performance and the speed at which they work, it could change the whole computing industry."

The researchers paired a ferro-electric material, lead zirconate titanate (PZT), with an insulating dielectric, strontium titanate (STO), to create a bilayer stack. They applied voltage to this PZT-STO structure, as well as to a layer of STO alone, and compared the amount of charge stored in both devices.

"There was an expected voltage drop to obtain a specific charge with the dielectric material", stated Sayeef Salahuddin. "But with the ferro-electric structure, we demonstrated a two-fold voltage enhancement in the charge for the same voltage, and that increase could potentially go significantly higher."

Since the first commercial microprocessors came onto the scene in the early 1970s, the number of transistors squeezed onto a computer chip has doubled every two years, a progression predicted by Intel co-founder Gordon Moore and popularly known as Moore's Law. Integrated circuits that once held thousands of transistors decades ago now boast billions of the components.

But the reduced size has not led to a proportional decrease in the overall power required to operate a computer chip. At room temperature, a minimum of 60 millivolts is required to increase by tenfold the amount of electrical current flowing through a transistor. Since the difference between a transistor's on and off states must be significant, it can take at least 1 volt to operate a transistor, the researchers said.

"We've hit a bottleneck", stated Asif Khan. "The clock speed of microprocessors has plateaued since 2005, and shrinking transistors further has become difficult."

The researchers noted that it becomes increasingly difficult to dissipate heat efficiently from smaller spaces, so reducing transistor size much more would come at the risk of frying the circuit board.

The solution proposed by Sayeef Salahuddin and his team is to modify current transistors so that they incorporate ferro-electric materials in their design, a change that could potentially generate a larger charge from a smaller voltage. This would allow engineers to make a transistor that dissipates less heat, and the shrinking of this key computer component could continue.

Notably, the material system the UC Berkeley researchers reported shows this effect at above 200 degrees Celsius, much hotter than the 85 degrees Celsius (185 degrees Fahrenheit) at which a current day microprocessor works.

The researchers are now exploring new ferro-electric materials for room temperature negative capacitance in addition to incorporating the materials into a new transistor.

Until then, Sayeef Salahuddin noted that there are other potential applications for ferro-electrics in electronics. "This is a good system for dynamic random access memories, energy storage devices,

super-capacitors that charge electric cars, and power capacitors for use in radio frequency communications", he stated.

This research was supported by the Semiconductor Research Corporation's Focus Center Research Programme and the Office of Naval Research.
Source: University of California - Berkeley

Back to Table of contents

Primeur weekly 2011-09-19

Exascale supercomputing

New IBM Blue Gene/Q supercomputer for Rensselaer ...

Fujitsu Laboratories develops compact silicon photonics light source for high-bandwidth CPU interconnects ...

The future accelerated: multi-core goes mainstream, computing pushed to extremes ...

The Cloud

Cordys selected by Fujitsu as strategic platform to offer Cloud services globally ...

EMC's new Center of Excellence and Cloud Data Center powers company's Cloud computing vision ...

Two new publications provide a Cloud computing standards roadmap and reference architecture ...

Hitachi Data Systems announces acquisition of BlueArc ...

HP unveils expanded Enterprise Security Solutions for the instant-on enterprise ...

Desktop Grids

TheSkyNet launched ...

IBM and University of Antioquia co-operate to seek drug for Leishmaniasis treatment ...

EuroFlash

Barcelona Supercomouting Center triples its calculation capacity ...

ADVA Optical Networking introduces industry's first 100G Metro solution ...

Registration open for the e-IRG open workshop in Poznań 12-13 October 2011 ...

Cracow Grid Workshop 2011 to issue Call for Papers ...

USFlash

Appro to deliver 800TFLOPs supercomputer to Japan's University of Tsukuba ...

NEC bundles TotalView as standard debugger for LX series HPC cluster solutions ...

WellPoint and IBM announce agreement to put Watson to work in health care ...

UC San Diego's HPWREN aids in recent supernova discovery ...

How the Milky Way got its spiral ...

Oracle sets new world-record result on SAP Sales and Distribution-Parallel standard application benchmark ...

$13-million NSF centre to explore new ways to manipulate light at the nanoscale ...

Oracle Utilities Customer Care and Billing with Oracle Exadata Database Machine demonstrates extreme performance for utility bill processing ...

Ferro-electrics could pave way for ultra-low power computing ...

Oracle introduces Pillar Axiom Release 5 Storage System Software ...

Broadcom to acquire NetLogic Microsystems Inc., an expert in network communications processors ...

SDSC and SDSU receive NSF grant to expand computer science curriculum ...

Intel announces new SATA solid-state drive for the data centre ...

SDSC researcher co-authors new book on managing event data ...

Syncfusion Sponsoring High Performance Computing for Wall Street Conference ...

Oracle releases Oracle Solaris 10 8/11 ...