Back to Table of contents

Primeur weekly 2011-09-26

Special

Steve Conway to highlight European HPC market at EGI Technical Forum ...

Exascale supercomputing

Appro and SDSC Gordon supercomputer to provide up to 35 million IOPS ...

"Stampede's" comprehensive capabilities to bolster U.S. open science computational resources ...

The Cloud

Bull and CA Technologies form a strategic alliance ...

Gresham Computing to launch Clareti Transaction Control ...

HP Channel Partners open new Cloud Centers of Excellence ...

IBM expands Cloud delivery of smarter commerce ...

'Managed application services added to Interoute’s unified computing portfolio ...

Midas Medici's CIMCORP wins $3 million contract for data centre solutions in Brazil ...

Oracle successfully completes Continua Health Alliance interoperability testing ...

SDSC announces scalable, high-performance data storage Cloud ...

Desktop Grids

e-ScienceTalk Briefing on Desktop Grids has just appeared ...

BOINC integrated with Wordpress ...

OurGrid version 4.2.6 now released ...

EuroFlash

Bright Computing now resells Altair PBS Professional Workload Manager, delivering HPC operational efficiencies and cost savings ...

Repsol and BSC create a joint research centre in Spain ...

Sailing Mediterranean ICT seas - Boosting high-speed ICT infrastructures across Europe and Mediterranean ...

Mini-quantum computer passes test ...

Like fish on waves: electrons go surfing ...

USFlash

Emerson Network Power doubles the life span of VME boards ...

Retailers generate high-volume sales with IBM solution for smarter commerce ...

Nearly half of IT decision makers favour solid-state storage technology ...

University of Minnesota Supercomputing Institute adds Dell Terascala HPC Storage Solution to Itasca system ...

Oracle announces the immediate availability of the Oracle Database Appliance ...

Oracle Financial Services Revenue Management and Billing running with Oracle Exadata Database Machine delivers extreme performance ...

Major supercomputing boost for University of Canterbury ...

Post-silicon computing ...

Post-silicon computing

19 Sep 2011 Pittsburgh - Could Pittsburgh be the nation's next "Strontium Valley"? The University of Pittsburgh is the lead institution on a $1.8 million grant from the National Science Foundation and the Nanoelectronics Research Initiative (NRI) of the Semiconductor Research Corporation (SRC) to bring a new kind of computer out of the lab and into the real world. The goal of the group, led by Jeremy Levy, a professor of physics and astronomy in Pitt's School of Arts and Sciences, is no less than transforming the way computing is done.

The four-year grant, titled "Scalable Sensing, Storage, and Computation With a Rewritable Oxide Nanoelectronics Platform", also involves researchers from the University of Wisconsin and Northwestern University. The programme aims to create new high-tech industries and jobs in the United States.

"The search for a new semiconductor device that will provide the United States with a leadership position in the global era of nanoelectronics relies on making discoveries at these kinds of advanced universities", stated Jeff Welser, director of the NRI for SRC.

Jeremy Levy and his team have invented a tiny Etch-A-Sketch that draws infinitesimally small "wires" on a surface, then erases them. The device works by switching an oxide crystal between insulating and conducting states. The interface between these two materials can be switched between an insulating and metallic state using a sharp conducting probe. Electronic circuits can be "written" and "erased" at scales approaching the distance between atoms (two nanometers). The device, less than four nanometers wide, enables photonic interaction with objects as small as single molecules or quantum dots.

This research grant explicitly addresses key scientific and technological challenges that, if overcome, could lead turn the "Etch-A-Sketch" into something real and useful - from being just a toy in a science lab to a possible replacement for conventional electronics made from silicon devices.

Beyond being just plain cool, this device could be the basis of an entirely new kind of transistor.

Transistors in a computer are the on/off switches that enable the efficient implementation of complex computational systems. And for the last half century, they've been getting smaller and smaller, according to (Intel founder Gordon) "Moore's law": The number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years. At some point, though, this trend has to stop. Materials start acting "weird" when they are made too small. The useful properties of silicon, for example, are believed to break down at distances smaller than 10 nanometers.

"The question is, once you've pushed silicon to its limit, is there going to be another system to do computation?" asked Jeremy Levy. That's really what we've been granted funding to explore. We're trying to break down the major barriers that are potential show-stoppers that would otherwise make it difficult to turn these new types of devices into real, useful things."

In 2008, Jeremy Levy and colleagues reported inSciencethat they had made a transistor with elements that were five interatomic distances wide. "These are really, really small transistors", Jeremy Levy emphasized. "We believe that they behave in a fundamentally different way from normal transistors."

To develop useful electronics, it is imperative to develop a scheme capable of creating and manipulating large numbers of devices. If it takes a minute to make a transistor, it would take a year to make a billion of them. This scaling is achieved through the use of large probe arrays.

Jeremy Levy uses an atomic force microscope, a specialized instrument that moves a probe and along a surface, to create the transistors. Another method, used by Chad Mirkin at Northwestern University, has developed ways of producing millions of such tips on a single wafer. "The idea is to do parallel writing - to have all of these different tips working in parallel", stated Jeremy Levy. That way, manufacturing takes a few minutes instead of a year.

How today's computers process information depends on a fixed architecture of ones and zeros - digital logic. Jeremy Levy envisions using new materials that might not follow that same architecture. "We want the material to tell us the best way it can do computation, rather than trying to impose an old architecture that was really designed for another type of material", he stated. "We want to listen to the material, and then map information processing onto what it's good at."

Professors Mark Rzchowski and Jack Ma at the University of Wisconsin will focus on this issue. The materials will be working with are part of a family known as "complex oxides". This class of materials shares many of the semiconducting properties of silicon, but have a wealth of other properties that make them interesting for computing, storage and sensing applications.

All computers require storage, but they store this information using very different architectures than the computer parts. In addition, an important function of electronics is that semiconductors can be used for sensing - which in this case really means sensing of light.

"We want to try to integrate all of these things together and have a platform that allows us to 'write' or 'erase' components capable of all of these functions", Jeremy Levy stated.

The principal material they wish to study is a sandwich of two such oxides: a thick layer of strontium titanate, with a thin (1.2 nanometer) layer of lanthanum aluminate. These materials will be grown in the laboratory of Professor Chang-Beom Eom at the University of Wisconsin.

Another issue Jeremy Levy is studying is the amount of power that is consumed by devices as they get smaller. With laptops, for example, clock speed - processor speed - used to be everything. But now, it's not touted as much. "Of course, that's because manufacturers can't make it go faster", Jeremy Levy pointed out. "They could increase the clock speed, but it would melt the silicon."

Not only is making computing more energy efficient good for the environment, it's also practical. "What we're interested in doing is trying to see if we can create info processing much closer to the fundamental limits", Jeremy Levy stated. "We know we can make things small; the question is can we make them small and not heat up to the temperature of the sun?"

The grant also includes an outreach component. A new "OnRamp" education programme targets specific difficulties that students have in their subdiscipline while beginning their research careers. OnRamp tutorials are developed by beginning graduate students as they "learn the ropes" of doing research. Graduate students help develop research-based learning modules, which are shared with a broader research community - "putting a ramp there to smooth out the bumps in the road so that people can get moving with research faster", stated Pitt professor of physics and astronomy Chandralekha Singh, who is leading this OnRamp programme.

In addition, both Pitt and Wisconsin continue to expand their high school outreach programmes aimed at increasing the numbers of underrepresented groups in science and engineering disciplines.
Source: University of Pittsburgh

Back to Table of contents

Primeur weekly 2011-09-26

Special

Steve Conway to highlight European HPC market at EGI Technical Forum ...

Exascale supercomputing

Appro and SDSC Gordon supercomputer to provide up to 35 million IOPS ...

"Stampede's" comprehensive capabilities to bolster U.S. open science computational resources ...

The Cloud

Bull and CA Technologies form a strategic alliance ...

Gresham Computing to launch Clareti Transaction Control ...

HP Channel Partners open new Cloud Centers of Excellence ...

IBM expands Cloud delivery of smarter commerce ...

'Managed application services added to Interoute’s unified computing portfolio ...

Midas Medici's CIMCORP wins $3 million contract for data centre solutions in Brazil ...

Oracle successfully completes Continua Health Alliance interoperability testing ...

SDSC announces scalable, high-performance data storage Cloud ...

Desktop Grids

e-ScienceTalk Briefing on Desktop Grids has just appeared ...

BOINC integrated with Wordpress ...

OurGrid version 4.2.6 now released ...

EuroFlash

Bright Computing now resells Altair PBS Professional Workload Manager, delivering HPC operational efficiencies and cost savings ...

Repsol and BSC create a joint research centre in Spain ...

Sailing Mediterranean ICT seas - Boosting high-speed ICT infrastructures across Europe and Mediterranean ...

Mini-quantum computer passes test ...

Like fish on waves: electrons go surfing ...

USFlash

Emerson Network Power doubles the life span of VME boards ...

Retailers generate high-volume sales with IBM solution for smarter commerce ...

Nearly half of IT decision makers favour solid-state storage technology ...

University of Minnesota Supercomputing Institute adds Dell Terascala HPC Storage Solution to Itasca system ...

Oracle announces the immediate availability of the Oracle Database Appliance ...

Oracle Financial Services Revenue Management and Billing running with Oracle Exadata Database Machine delivers extreme performance ...

Major supercomputing boost for University of Canterbury ...

Post-silicon computing ...