Back to Table of contents

Primeur weekly 2018-08-13

Focus

DEEP-EST project is exploring the nuts and bolts of mildly disruptive modular supercomputing architecture ...

Gidel's FPGAs only use 1% of their capacity for lossless compression and encryption ...

German HPC and EuroHPC, a question of competitive collaboration benefiting science ...

Quantum computing

NSF launches effort to create practical quantum computer ...

The Rigetti 128-qubit chip and what it means for quantum ...

Quantum chains in graphene nanoribbons ...

Tying electrons down with nanoribbons ...

Focus on Europe

Falling moons: When proto-Earth met its makers - German and Israeli supercomputers spend 100 weeks crunching astronomical numbers ...

PRACE SHAPE Programme supports three further SMEs ...

High Performance Computing for a better agriculture ...

ExCAPE: developing new medicines with high performance computing ...

RDA Grants for Early Careers and Experts - Join the 12th RDA Plenary, 5-8 November 2018, Botswana as part of the International Data Week 2018 ...

Middleware

NetApp and NVIDIA supercharge deep learning with new AI architecture ...

Ohio Supercomputer Center hosting sixth meeting of the MVAPICH Users Group ...

Julia 1.0 has now been released ...

Hardware

Supermicro opens new era of petascale computing with a family of all-flash NVMe 1U systems scalable up to a petabyte of high performance storage ...

DDN building new flash enterprise virtualisation and analytics division with 100 new hires planned through September ...

Co-construction of the future university: Sugon signs with XJTLU ...

Intel launches world's densest, totally silent solid state drive ...

Intel's vision for the future of memory and storage with Optane + QLC ...

University of Texas at Arlington researcher working to use computer cache to speed up memory access ...

Applications

Blue Waters professor Kaiyu Guan receives AGU Early Career Award ...

NCSA Brown Dog project wins Best Technical Paper at PEARC18 ...

2018 NCSA Blue Waters Symposium presentations now available ...

Supercomputer simulations show new target in HIV-1 replication ...

The Rigetti 128-qubit chip and what it means for quantum


Rigetti's new 128-qubit chip is based on a scalable 16-qubit form factor.
8 Aug 2018 Berkeley, Fremont - Rigetti Computing is committed to building the world's most powerful computers. However, the true value of quantum will be unlocked through practical applications. Everything Rigetti developers do, is through the lens of experimenting with quantum computers to solve some of society's most pressing problems.

Recent advances in hybrid algorithms have made the practical use of near-term quantum computers arise sooner than many of us thought possible. That is why the company is focused on strengthening each layer of the quantum computing stack, from the hardware to the applications, to bring the practical use of quantum computing to life.

Rigetti is sharing more details on its plans to build and deploy a 128-qubit system over the next 12 months, and its investment in resources at the application layer to encourage experimentation on its quantum computers.

The next phase of quantum computing will require more power at the hardware level to drive better results. Over the past year, the company has built 8-qubit and 19-qubit superconducting quantum processors, which have been accessible to users over the Cloud through its open source software platform Forest. These chips have been useful in helping researchers around the globe carry out and test programmes on Rigetti's quantum-classical hybrid computers. However, to drive practical use of quantum computing today, one must be able to scale and improve the performance of the chips and connect them to the electronics on which they run  - which has proven to be one of the most challenging aspects of quantum computing.

Rigetti is in a unique position to solve these problems and build systems that scale. Its 128-qubit chip is developed on a new form factor that lends itself to rapid scaling. Because the in-house design, fab, software, and applications teams work closely together, the company is able to iterate and deploy new systems quickly. The custom control electronics are designed specifically for hybrid quantum-classical computers, and Rigetti has begun integrating a 3D signaling architecture that will allow for truly scalable quantum chips. Over the next year, the company will put these pieces together to bring more power to researchers and developers.

The company is also homing in on the application layer to put our breakthrough hardware to use. After all, applications allow to find solutions for real-world problems, which is what the team is most passionate about. The in-house applications research team is focused on pursuing quantum advantage in three areas: quantum simulation, optimization, and machine learning.

Quantum advantage comes from creating a solution that is faster, cheaper, or better quality. It is an open question as to which industry will achieve the first commercially useful applications. But even a small performance improvement over classical machines can add tremendous value for researchers and businesses around the world who run, test, and optimize experiments on Forest.

Running experiments teaches the team a lot about how these machines work and can best be put to use. Neither continued hardware progress nor applications research alone will drive value: the critical component is their tight integration in support of solving real-world problems. Partnering with researchers and enterprises to continually advance these capabilities and tailor them to long-term business and research challenges will unlock the power of quantum for everyone.

Source: Rigetti Computing

Back to Table of contents

Primeur weekly 2018-08-13

Focus

DEEP-EST project is exploring the nuts and bolts of mildly disruptive modular supercomputing architecture ...

Gidel's FPGAs only use 1% of their capacity for lossless compression and encryption ...

German HPC and EuroHPC, a question of competitive collaboration benefiting science ...

Quantum computing

NSF launches effort to create practical quantum computer ...

The Rigetti 128-qubit chip and what it means for quantum ...

Quantum chains in graphene nanoribbons ...

Tying electrons down with nanoribbons ...

Focus on Europe

Falling moons: When proto-Earth met its makers - German and Israeli supercomputers spend 100 weeks crunching astronomical numbers ...

PRACE SHAPE Programme supports three further SMEs ...

High Performance Computing for a better agriculture ...

ExCAPE: developing new medicines with high performance computing ...

RDA Grants for Early Careers and Experts - Join the 12th RDA Plenary, 5-8 November 2018, Botswana as part of the International Data Week 2018 ...

Middleware

NetApp and NVIDIA supercharge deep learning with new AI architecture ...

Ohio Supercomputer Center hosting sixth meeting of the MVAPICH Users Group ...

Julia 1.0 has now been released ...

Hardware

Supermicro opens new era of petascale computing with a family of all-flash NVMe 1U systems scalable up to a petabyte of high performance storage ...

DDN building new flash enterprise virtualisation and analytics division with 100 new hires planned through September ...

Co-construction of the future university: Sugon signs with XJTLU ...

Intel launches world's densest, totally silent solid state drive ...

Intel's vision for the future of memory and storage with Optane + QLC ...

University of Texas at Arlington researcher working to use computer cache to speed up memory access ...

Applications

Blue Waters professor Kaiyu Guan receives AGU Early Career Award ...

NCSA Brown Dog project wins Best Technical Paper at PEARC18 ...

2018 NCSA Blue Waters Symposium presentations now available ...

Supercomputer simulations show new target in HIV-1 replication ...