Back to Table of contents

Primeur weekly 2016-08-22

Special

ExaCT team shows how Legion S3D code is a tribute to co-design on the way to exascale supercomputing ...

Focus

Sunway TaihuLight's strengths and weaknesses highlighted by Jack Dongarra ...

Exascale supercomputing

Big PanDA tackles Big Data for physics and other future extreme scale scientific applications ...

Computer programming made easier ...

Quantum computing

Cryptographers from the Netherlands win 2016 Internet Defense Prize ...

Focus on Europe

STFC Daresbury Laboratory to host 2016 Hands-on Tutorial on CFD using open-source software Code_Saturne ...

Middleware

Germany joins ELIXIR ...

Columbus Collaboratory announces CognizeR, an Open Source R extension that accelerates data scientists' access to IBM Watson ...

Cycle Computing optimizes NASA tree count and climate impact research ...

GPU-accelerated computing made better with NVIDIA DCGM and PBS Professional ...

Hardware

Mellanox demonstrates accelerated NVMe over Fabrics at Intel Developers Forum ...

Nor-Tech has developed the first affordable supercomputers designed to be used in an office, rather than a data centre ...

NVIDIA CEO delivers world's first AI supercomputer in a box to OpenAI ...

AMD demonstrates breakthrough performance of next-generation Zen processor core ...

CAST and PLDA Group demonstrate x86-compliant high compression ratio GZIP acceleration on FPGA, accessible to non-FPGA experts using the QuickPlay software defined FPGA development tool ...

IBM Research - Almaden celebrates 30 years of innovation in Silicon Valley ...

Wiring reconfiguration saves millions for Trinity supercomputer ...

Cavium completes acquisition of QLogic ...

Applications

Soybean science blooms with supercomputers ...

NOAA launches America's first national water forecast model ...

Computers trounce pathologists in predicting lung cancer type, severity, researchers find ...

Star and planetary scientists get millions of hours on EU supercomputers ...

Bill Gropp named acting director of NCSA ...

Latest NERSC/Intel/Cray dungeon session yields impressive code speed-ups ...

User-friendly language for programming efficient simulations ...

New book presents how deep learning neural networks are designed ...

Liquid light switch could enable more powerful electronics ...

Energy Department to invest $16 million in computer design of materials ...

Pitt engineers receive grant to develop fast computational modelling for 3D printing ...

Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses ...

Teaching machines to direct traffic through deep reinforcement learning ...

Simulations by PPPL physicists suggest that magnetic fields can calm plasma instabilities ...

New material discovery allows study of elusive Weyl fermion ...

New maths to predict dangerous hospital epidemics ...

Kx financial analytics technology tackles Big Data crop research at biotech leader Earlham Institute ...

The Cloud

New hacking technique imperceptibly changes memory virtual servers ...

Energy Department to invest $16 million in computer design of materials


Paul Kent of Oak Ridge National Laboratory directs the Center for Predictive Simulation of Functional Materials. Credit: Oak Ridge National Laboratory, US Dept. of Energy; photographer Jason Richards.
16 Aug 2016 Oak Ridge - The U.S. Department of Energy will invest $16 million over the next four years to accelerate the design of new materials through use of supercomputers.

Two four-year projects - one team led by DOE's Oak Ridge National Laboratory (ORNL), the other team led by DOE's Lawrence Berkeley National Laboratory (LBNL) - will take advantage of superfast computers at DOE national laboratories by developing software to design fundamentally new functional materials destined to revolutionize applications in alternative and renewable energy, electronics, and a wide range of other fields. The research teams include experts from universities and other national labs.

The new grants - part of DOE's Computational Materials Sciences (CMS) programme begun in 2015 as part of the U.S. Materials Genome Initiative - reflect the enormous recent growth in computing power and the increasing capability of high-performance computers to model and simulate the behaviour of matter at the atomic and molecular scales.

The teams are expected to develop sophisticated and user-friendly open-source software that captures the essential physics of relevant systems and can be used by the broader research community and by industry to accelerate the design of new functional materials.

"Given the importance of materials to virtually all technologies, computational materials science is a critical area in which the United States needs to be competitive in the twenty-first century and beyond through global leadership in innovation", stated Cherry Murray, director of DOE's Office of Science, which is funding the research. "These projects will both harness DOE existing high-performance computing capabilities and help pave the way toward ever-more sophisticated software for future generations of machines."

"ORNL researchers will partner with scientists from national labs and universities to develop software to accurately predict the properties of quantum materials with novel magnetism, optical properties and exotic quantum phases that make them well-suited to energy applications", stated Paul Kent of ORNL, director of the Center for Predictive Simulation of Functional Materials, which includes partners from Argonne, Lawrence Livermore, Oak Ridge and Sandia National Laboratories and North Carolina State University and the University of California-Berkeley. "Our simulations will rely on current petascale and future exascale capabilities at DOE supercomputing centres. To validate the predictions about material behaviour, we'll conduct experiments and use the facilities of the Advanced Photon Source, Spallation Neutron Source and the Nanoscale Science Research Centers."

Stated the centre's thrust leader for prediction and validation, Olle Heinonen: "At Argonne, our expertise in combining state-of-the-art, oxide molecular beam epitaxy growth of new materials with characterization at the Advanced Photon Source and the Center for Nanoscale Materials will enable us to offer new and precise insight into the complex properties important to materials design. We are excited to bring our particular capabilities in materials, as well as expertise in software, to the centre so that the labs can comprehensively tackle this challenge."

Researchers are expected to make use of the 30-petaflop/s Cori supercomputer now being installed at the National Energy Research Scientific Computing Center (NERSC) at Berkeley Lab, the 27-petaflop/s Titan computer at the Oak Ridge Leadership Computing Facility (OLCF) and the 10-petaflop/s Mira computer at Argonne Leadership Computing Facility (ALCF). OLCF, ALCF and NERSC are all DOE Office of Science User Facilities. One petaflop/s is1015 or a million times a billion floating-point operations per second.

In addition, a new generation of machines is scheduled for deployment between 2016 and 2019 that will take peak performance as high as 200 petaflops. Ultimately the software produced by these projects is expected to evolve to run on exascale machines, capable of 1,000 petaflops and projected for deployment in the mid-2020s.

Research will combine theory and software development with experimental validation, drawing on the resources of multiple DOE Office of Science User Facilities, including the Advanced Light Source at LBNL, the Advanced Photon Source at Argonne National Laboratory (ANL), the Spallation Neutron Source at ORNL, and several of the five Nanoscience Research Centers across the DOE National Laboratory complex.

The new research projects will begin in Fiscal Year 2016. They expand the ongoing CMS research effort, which began in FY 2015 with three initial projects, led respectively by ANL, Brookhaven National Laboratory and the University of Southern California.

Source: DOE/Oak Ridge National Laboratory

Back to Table of contents

Primeur weekly 2016-08-22

Special

ExaCT team shows how Legion S3D code is a tribute to co-design on the way to exascale supercomputing ...

Focus

Sunway TaihuLight's strengths and weaknesses highlighted by Jack Dongarra ...

Exascale supercomputing

Big PanDA tackles Big Data for physics and other future extreme scale scientific applications ...

Computer programming made easier ...

Quantum computing

Cryptographers from the Netherlands win 2016 Internet Defense Prize ...

Focus on Europe

STFC Daresbury Laboratory to host 2016 Hands-on Tutorial on CFD using open-source software Code_Saturne ...

Middleware

Germany joins ELIXIR ...

Columbus Collaboratory announces CognizeR, an Open Source R extension that accelerates data scientists' access to IBM Watson ...

Cycle Computing optimizes NASA tree count and climate impact research ...

GPU-accelerated computing made better with NVIDIA DCGM and PBS Professional ...

Hardware

Mellanox demonstrates accelerated NVMe over Fabrics at Intel Developers Forum ...

Nor-Tech has developed the first affordable supercomputers designed to be used in an office, rather than a data centre ...

NVIDIA CEO delivers world's first AI supercomputer in a box to OpenAI ...

AMD demonstrates breakthrough performance of next-generation Zen processor core ...

CAST and PLDA Group demonstrate x86-compliant high compression ratio GZIP acceleration on FPGA, accessible to non-FPGA experts using the QuickPlay software defined FPGA development tool ...

IBM Research - Almaden celebrates 30 years of innovation in Silicon Valley ...

Wiring reconfiguration saves millions for Trinity supercomputer ...

Cavium completes acquisition of QLogic ...

Applications

Soybean science blooms with supercomputers ...

NOAA launches America's first national water forecast model ...

Computers trounce pathologists in predicting lung cancer type, severity, researchers find ...

Star and planetary scientists get millions of hours on EU supercomputers ...

Bill Gropp named acting director of NCSA ...

Latest NERSC/Intel/Cray dungeon session yields impressive code speed-ups ...

User-friendly language for programming efficient simulations ...

New book presents how deep learning neural networks are designed ...

Liquid light switch could enable more powerful electronics ...

Energy Department to invest $16 million in computer design of materials ...

Pitt engineers receive grant to develop fast computational modelling for 3D printing ...

Environmental datasets help researchers double the number of microbial phyla known to be infected by viruses ...

Teaching machines to direct traffic through deep reinforcement learning ...

Simulations by PPPL physicists suggest that magnetic fields can calm plasma instabilities ...

New material discovery allows study of elusive Weyl fermion ...

New maths to predict dangerous hospital epidemics ...

Kx financial analytics technology tackles Big Data crop research at biotech leader Earlham Institute ...

The Cloud

New hacking technique imperceptibly changes memory virtual servers ...