Back to Table of contents

Primeur weekly 2016-08-29

Exascale supercomputing

World's biggest telescope meets world's second fastest supercomputer ...

NSF awards $110 million for advanced cyberinfrastructure to nation's scientists and engineers ...

Neuromorphic computing market worth $6,480.1 million by 2024 according to Grand View Research Inc. ...

University of Texas at Arlington physicists to upgrade Titan supercomputer software for extreme scale applications ...

Quantum computing

Artificial atom created in graphene ...

Focus on Europe

Next steps in understanding brain function ...

New approach to computing boosts energy efficiency ...

Silicon nanoparticles trained to juggle light ...

Middleware

Avere Systems and Cycle Computing provide one-click Cloud compute scalability ...

Hardware

SCinet Inventory: High performance storage - untangling 89 miles of fiber ...

New microchip demonstrates efficiency and scalable design ...

Programmable routers could enable more resilient networks ...

Chaos could provide the key to enhanced wireless communications ...

Secure networks for the Internet of the future ...

Mellanox expands Asia-Pacific presence, new Singapore headquarters and state-of-the-art Solutions Centre to strengthen footprint in Asia ...

IDT and IBM develop high-performance computing solution for telecom edge computing networks ...

Applications

IBM Research opens in South Africa; Cognitive computing and the IoT help track diseases and forecast air quality ...

ACM Gordon Bell Prize recognizes top accomplishments in running science apps on HPC ...

Insights into the dawn of the universe ...

Reef castaways: Can coral make it across Darwin's impassable barrier? ...

RAND and Lawrence Livermore National Lab combine computing & public policy analysis ...

Problems in mechanics open the door to the orderly world of chaos ...

New approach to determining how atoms are arranged in materials ...

Post-disaster optimization technique capable of analyzing entire cities ...

Where does AlphaGo go? ...

PPPL and Princeton help lead centre for study of runaway electrons ...

NSF funds new integrative approaches to study the brain ...

Streamlining accelerated computing for industry ...

Finalists compete for prestigious ACM Gordon Bell Prize in High Performance Computing ...

University of Texas at Austin and Technical University of Dresden PhD students to receive International High Performance Computing Fellowships ...

The Cloud

IBM expands all-flash storage offerings for Cloud and cognitive computing ...

Bodhi Healthcare Group brings Cloud-based health care solution to Chinese hospital with IBM LinuxONE ...

PPPL and Princeton help lead centre for study of runaway electrons


This is physicist Dylan Brennan. Credit: Elle Starkman/PPPL Office of Communications.
22 Aug 2016 Plainsboro - Runaway electrons, a searing, laser-like beam of electric current released by plasma disruptions, could damage the interior walls of future tokamaks the size of ITER, the international fusion experiment under construction in France. To help overcome this challenge, leading experts in the field have launched a multi-institutional centre to find ways to prevent or mitigate such events.

"This is like a strike force to solve the problem and we need to get it right", stated physicist Dylan Brennan of the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University. "It's very clear that runaways will be a problem", stated Dylan Brennan, who with Xianzhu Tang of Los Alamos National Laboratory is co-lead principal investigator. "The goal is to take different scenarios for runaway electrons and come up with a recipe for solving them."

The project, called "Simulation Center for Runaway Electron Avoidance and Mitigation", will combine simulations and data from worldwide experiments to explore the causes and solutions for runaway electrons. Members are from nine U.S. universities and national laboratories. Participants include the Oak Ridge, Lawrence Berkeley and Los Alamos national laboratories, the universities of Texas, California-San Diego and Columbia University and General Atomics in San Diego. Support totals $3.9 million over two years from the DOE's Office of Science.

Runaway electrons are relativistic - they travel at nearly the speed of light. To control these particles, researchers must utilize equations derived from Einstein's special theory of relativity, which describes the effect of relativistic speeds on moving bodies.

These equations apply to the huge ITER tokamak. "ITER will be operating in a regime of plasma parameters well beyond the reach of any existing tokamak experiment", stated Amitava Bhattacharjee, head of the Theory Department at PPPL. "Therefore, one must rely on the predictive power of theory and simulation, which must be validated by comparison with present-day experiments and extrapolated to ITER conditions."

Research of the center will contribute to a disruption mitigation system to be incorporated in ITER. The US ITER Project Office, based at Oak Ridge National Laboratory (ORNL), will be responsible for the system.

Tasks of the center will include:

  • Establishing the physical basis for the generation and evolution of runaway electrons.
  • Exploring the path for avoiding runaway electrons.
  • Investigating the leading candidates for mitigating the problem.

A key centre tool will be input from scientists supported by DOE's Advanced Scientific Computing Research (ASCR) programme. It will handle the complex mathematics needed to simulate how runaways traveling at relativistic speed interact with the background plasma - a major issue in comprehending the problem. "There is still much that we don't understand", stated Dylan Brennan.

ASCR scientists will facilitate cutting-edge simulations with advanced codes on the Titan supercomputer at the Oak Ridge Leadership Computing Facility (OLCF) at ORNL, and on supercomputers at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. The centre will cross-check the results to verify their accuracy. OLCF and NERSC are DOE Office of Science User Facilities.

Another critical step will be to close the gap between theoretical explanations of runaway electrons and experimental observations, for which wide discrepancies have been found. The centre will determine how well its simulations fit the experimental data - a key factor needed to create confidence in the group's predictions for ITER.

Also under study will be the primary methods for mitigating runaway electrons. These methods inject impurities in the form of massive gas or shattered pellets to cool the plasma and shut it down before disruptions can occur. But such techniques could also cause the electrons to accelerate; the centre therefore aims to define the best mix of impurities and their injection rates for avoiding the problem.

Source: DOE/Princeton Plasma Physics Laboratory - PPPL

Back to Table of contents

Primeur weekly 2016-08-29

Exascale supercomputing

World's biggest telescope meets world's second fastest supercomputer ...

NSF awards $110 million for advanced cyberinfrastructure to nation's scientists and engineers ...

Neuromorphic computing market worth $6,480.1 million by 2024 according to Grand View Research Inc. ...

University of Texas at Arlington physicists to upgrade Titan supercomputer software for extreme scale applications ...

Quantum computing

Artificial atom created in graphene ...

Focus on Europe

Next steps in understanding brain function ...

New approach to computing boosts energy efficiency ...

Silicon nanoparticles trained to juggle light ...

Middleware

Avere Systems and Cycle Computing provide one-click Cloud compute scalability ...

Hardware

SCinet Inventory: High performance storage - untangling 89 miles of fiber ...

New microchip demonstrates efficiency and scalable design ...

Programmable routers could enable more resilient networks ...

Chaos could provide the key to enhanced wireless communications ...

Secure networks for the Internet of the future ...

Mellanox expands Asia-Pacific presence, new Singapore headquarters and state-of-the-art Solutions Centre to strengthen footprint in Asia ...

IDT and IBM develop high-performance computing solution for telecom edge computing networks ...

Applications

IBM Research opens in South Africa; Cognitive computing and the IoT help track diseases and forecast air quality ...

ACM Gordon Bell Prize recognizes top accomplishments in running science apps on HPC ...

Insights into the dawn of the universe ...

Reef castaways: Can coral make it across Darwin's impassable barrier? ...

RAND and Lawrence Livermore National Lab combine computing & public policy analysis ...

Problems in mechanics open the door to the orderly world of chaos ...

New approach to determining how atoms are arranged in materials ...

Post-disaster optimization technique capable of analyzing entire cities ...

Where does AlphaGo go? ...

PPPL and Princeton help lead centre for study of runaway electrons ...

NSF funds new integrative approaches to study the brain ...

Streamlining accelerated computing for industry ...

Finalists compete for prestigious ACM Gordon Bell Prize in High Performance Computing ...

University of Texas at Austin and Technical University of Dresden PhD students to receive International High Performance Computing Fellowships ...

The Cloud

IBM expands all-flash storage offerings for Cloud and cognitive computing ...

Bodhi Healthcare Group brings Cloud-based health care solution to Chinese hospital with IBM LinuxONE ...