Back to Table of contents

Primeur weekly 2015-08-10

Special

European Supercomputer Programme in next Horizon 2020 period programme to also focus on HPC access for SMEs ...

Numascale's scalable appliances for data analytics meet customers' needs at attractive price points ...

Bright Computing to combine HPC and Big Data workloads on bare metal and virtualized with Bright Cluster Manager and Bright OpenStack ...

European exascale projects DEEP-ER and Mont-Blanc to investigate new programming and network-attached memory technologies ...

Focus on Europe

The Alan Turing Institute signals progress on many fronts ...

Middleware

Inaugural OpenMPCon next month in Aachen - Conference Chair Michael Wong is expecting the OpenMP community there ...

Hardware

Fujitsu reports fiscal 2015 first-quarter financial results ...

Better together: Graphene-nanotube hybrid switches ...

Watson to gain ability to "see" with planned $1 billion acquisition of Merge Healthcare ...

Micron broadens storage portfolio for customers with new SAS solid state drive family for data-intensive applications ...

HPC specialist transtec will receive 7-million-euro contract from the Karlsruhe Institute of Technology ...

DNI Clapper names new IARPA Director ...

Applications

Saturn's rings in a supercomputer ...

Purdue University researchers achieve 900 percent faster access to data leveraging DDN solid state storage cache ...

The Cloud

Chameleon Cloud computing testbed goes into full production ...

CloudBroker Platform from Switzerland rated the number one innovation in EU report about research projects in ICT ...

IBM opens Bluemix Garage in Toronto to help enterprises rapidly develop applications using IBM Cloud ...

IBM named leader in Cloud hosting and integration services ...

Tractor Supply Company teams with IBM for redesigned website and Cloud transformation ...

EuroFlash

Nature: Compact optical data transmission ...

MIPT researchers clear the way for fast plasmonic chips ...

USFlash

South Dakota Board of Regents awards USD $200,000 for scientific research supercomputer ...

SGI reports fourth quarter and fiscal year 2015 financial results ...

Study calculates the speed of ice formation ...

Better together: Graphene-nanotube hybrid switches


Michigan Tech, Yoke Khin Yap
3 Aug 2015 Houghton - Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological applications. However, on their own, these materials are terrible for use in the electronics world. As a conductor, graphene lets electrons zip too fast - there's no controlling or stopping them - while boron nitride nanotubes are so insulating that electrons are rebuffed like an overeager dog hitting the patio door. But together, these two materials make a workable digital switch, which is the basis for controlling electrons in computers, phones, medical equipment and other electronics.

Yoke Khin Yap, a professor of physics at Michigan Technological University, has worked with a research team that created these digital switches by combining graphene and boron nitride nanotubes. The journalScientific Reportsrecently published their work.

"The question is: How do you fuse these two materials together?" Yoke Khin Yap stated. The key is in maximizing their existing chemical structures and exploiting their mismatched features.

Graphene is a molecule-thick sheet of carbon atoms; the nanotubes are like straws made of boron and nitrogen. Yoke Khin Yap and his team exfoliate graphene and modify the material's surface with tiny pinholes. Then they can grow the nanotubes up and through the pinholes. Meshed together like this, the material looks like a flake of bark sprouting erratic, thin hairs.

"When we put these two aliens together, we create something better", Yoke Khin Yap stated, explaining that it's important that the materials have lopsided band gaps, or differences in how much energy it takes to excite an electron in the material. "When we put them together, you form a band gap mismatch - that creates a so-called 'potential barrier' that stops electrons."

The band gap mismatch results from the materials' structure: graphene's flat sheet conducts electricity quickly, and the atomic structure in the nanotubes halts electric currents. This disparity creates a barrier, caused by the difference in electron movement as currents move next to and past the hair-like boron nitride nanotubes. These points of contact between the materials - called heterojunctions - are what make the digital on/off switch possible.

"Imagine the electrons are like cars driving across a smooth track", Yoke Khin Yap stated. "They circle around and around, but then they come to a staircase and are forced to stop."

Yoke Khin Yap and his research team have also shown that because the materials are respectively so effective at conducting or stopping electricity, the resulting switching ratio is high. In other words, how fast the materials can turn on and off is several orders of magnitude greater than current graphene switches. In turn, this speed could eventually quicken the pace of electronics and computing.

To get to faster and smaller computers one day, Yoke Khin Yap said this study is a continuation of past research into making transistors without semiconductors. The problem with semiconductors like silicon is that they can only get so small, and they give off a lot of heat; the use of graphene and nanotubes bypasses those problems. In addition, the graphene and boron nitride nanotubes have the same atomic arrangement pattern, or lattice matching. With their aligned atoms, the graphene-nanotube digital switches could avoid the issues of electron scattering.

"You want to control the direction of the electrons", Yoke Khin Yap explained, comparing the challenge to a pinball machine that traps, slows down and redirects electrons. "This is difficult in high speed environments, and the electron scattering reduces the number and speed of electrons."

Much like an arcade enthusiast, Yoke Khin Yap said he and his team will continue trying to find ways to outsmart or change the pinball set-up of graphene to minimize electron scattering. And one day, all their tweaks could make for faster computers - and digital pinball games - for the rest of us.
Source: Michigan Technological University

Back to Table of contents

Primeur weekly 2015-08-10

Special

European Supercomputer Programme in next Horizon 2020 period programme to also focus on HPC access for SMEs ...

Numascale's scalable appliances for data analytics meet customers' needs at attractive price points ...

Bright Computing to combine HPC and Big Data workloads on bare metal and virtualized with Bright Cluster Manager and Bright OpenStack ...

European exascale projects DEEP-ER and Mont-Blanc to investigate new programming and network-attached memory technologies ...

Focus on Europe

The Alan Turing Institute signals progress on many fronts ...

Middleware

Inaugural OpenMPCon next month in Aachen - Conference Chair Michael Wong is expecting the OpenMP community there ...

Hardware

Fujitsu reports fiscal 2015 first-quarter financial results ...

Better together: Graphene-nanotube hybrid switches ...

Watson to gain ability to "see" with planned $1 billion acquisition of Merge Healthcare ...

Micron broadens storage portfolio for customers with new SAS solid state drive family for data-intensive applications ...

HPC specialist transtec will receive 7-million-euro contract from the Karlsruhe Institute of Technology ...

DNI Clapper names new IARPA Director ...

Applications

Saturn's rings in a supercomputer ...

Purdue University researchers achieve 900 percent faster access to data leveraging DDN solid state storage cache ...

The Cloud

Chameleon Cloud computing testbed goes into full production ...

CloudBroker Platform from Switzerland rated the number one innovation in EU report about research projects in ICT ...

IBM opens Bluemix Garage in Toronto to help enterprises rapidly develop applications using IBM Cloud ...

IBM named leader in Cloud hosting and integration services ...

Tractor Supply Company teams with IBM for redesigned website and Cloud transformation ...

EuroFlash

Nature: Compact optical data transmission ...

MIPT researchers clear the way for fast plasmonic chips ...

USFlash

South Dakota Board of Regents awards USD $200,000 for scientific research supercomputer ...

SGI reports fourth quarter and fiscal year 2015 financial results ...

Study calculates the speed of ice formation ...