Back to Table of contents

Primeur weekly 2019-07-22

Focus

EuroHPC Research and Innovation calls open July 25 with a total budget of 95 million euro ...

Quantum computing

Limitation exposed in promising quantum computing material ...

Bristol awarded GBP 8,4 million to strengthen quantum research programmes ...

Researchers build transistor-like gate for quantum information processing - with qudits ...

Fujitsu harnesses Quantum-inspired Digital Annealer technology to optimize output efficiency in power generation for renewable energy devices ...

Quantum photonics by serendipity ...

Focus on Europe

Hungary joins Italian pre-exascale EuroHPC consortium ...

Middleware

SUSE joins the iRODS Consortium ...

Hardware

NSF awards $10 million to SDSC to deploy 'Expanse' supercomputer ...

GRC announces licensing agreement with Nihon Form Services to tailor GRC's data centre immersion cooling technology for the Japanese market ...

High Performance Computing (HPC) arrives at the Edge of Space ...

Arm Flexible Access gives chip designers the freedom to experiment and test before they invest ...

Supermicro brings unprecedented performance and configurability to the intelligent edge for new security, 5G, and AI solutions ...

SwiftStack joins NVIDIA Partner Network ...

Intel and SAP broaden their technology partnership to power enterprises' digital transformation ...

The Pittsburgh Supercomputing Center to host Bridges-2 supercomputers at Next Tier Connect ...

Applications

HPC4Energy Innovation Programme announces first awards for public/private partnerships ...

Atos orchestrates AURAGEN's genomic sequencing calculation solution ...

Who's using Argonne's user facilities? ...

Predicting material properties with quantum Monte Carlo ...

NERSC hosts first 'GPUs for Science' Workshop ...

First Corones Award goes to NERSC computer scientist ...

HPC4Manufacturing project aims at improving thin-film processes used in LED lights ...

Dirty bomb simulator prepares responders ...

LHC experiments present new results on rare Higgs phenomena at 2019 EPS-HEP conference ...

RIT professor honoured with Presidential Early Career Award for Scientists and Engineers ...

A graphene superconductor that plays more than one tune ...

The Cloud

Atos becomes a Microsoft Azure Expert Managed Service Provider (MSP) ...

Researchers build transistor-like gate for quantum information processing - with qudits


A two-qudit gate, among the first of its kind, maximizes the entanglement of photons so that quantum information can be manipulated more predictably and reliably. Purdue University image/Allison Rice.
16 Jul 2019 West Lafayette - Quantum information processing promises to be much faster and more secure than what today's supercomputers can achieve, but doesn't exist yet because its building blocks, qubits, are notoriously unstable.

Purdue University researchers are among the first to build a gate - what could be a quantum version of a transistor, used in today's computers for processing information - with qudits. Whereas qubits can exist only in superpositions of 0 and 1 states, qudits exist in multiple states, such as 0 and 1 and 2. More states mean that more data can be encoded and processed.

The gate would not only be inherently more efficient than qubit gates, but also more stable because the researchers packed the qudits into photons, particles of light that aren't easily disturbed by their environment. The researchers' findings appear in npj Quantum Information .

The gate also creates one of the largest entangled states of quantum particles to date - in this case, photons. Entanglement is a quantum phenomenon that allows measurements on one particle to automatically affect measurements on another particle, bringing the ability to make communication between parties unbreakable or to teleport quantum information from one point to another, for example.

The more entanglement in the so-called Hilbert space - the realm where quantum information processing can take place - the better.

Previous photonic approaches were able to reach 18 qubits encoded in six entangled photons in the Hilbert space. Purdue researchers maximized entanglement with a gate using four qudits - the equivalent of 20 qubits - encoded in only two photons.

In quantum communication, less is more. "Photons are expensive in the quantum sense because they're hard to generate and control, so it's ideal to pack as much information as possible into each photon", stated Poolad Imany, a postdoctoral researcher in Purdue’s School of Electrical and Computer Engineering.

The team achieved more entanglement with fewer photons by encoding one qudit in the time domain and the other in the frequency domain of each of the two photons. They built a gate using the two qudits encoded in each photon, for a total of four qudits in 32 dimensions, or possibilities, of both time and frequency. The more dimensions, the more entanglement.

Starting from two photons entangled in the frequency domain and then operating the gate to entangle the time and frequency domains of each photon generates four fully-entangled qudits, which occupy a Hilbert space of 1.048.576 dimensions, or 32 to the fourth power.

Typically, gates built on photonic platforms to manipulate quantum information encoded in separate photons work only some of the time because photons naturally don’t interact with each other very well, making it extremely difficult to manipulate the state of one photon based on the state of another. By encoding quantum information in the time and frequency domains of photons, Purdue researchers made operating the quantum gate deterministic as opposed to probabilistic.

The team implemented the gate with a set of standard off-the-shelf equipment used daily in the optical communication industry.

"This gate allows us to manipulate information in a predictable and deterministic way, which means that it could perform the operations necessary for certain quantum information processing tasks", stated Andrew Weiner, Purdue's Scifres Family Distinguished Professor of Electrical and Computer Engineering, whose lab specializes in ultrafast optics.

Next, the team wants to use the gate in quantum communications tasks such as high-dimensional quantum teleportation as well as for performing quantum algorithms in applications such as quantum machine learning or simulating molecules.

The work is funded in part by the National Science Foundation (Grant number 1839191-ECCS) and a Wigner Fellowship at Oak Ridge National Laboratory.
Source: Purdue University

Back to Table of contents

Primeur weekly 2019-07-22

Focus

EuroHPC Research and Innovation calls open July 25 with a total budget of 95 million euro ...

Quantum computing

Limitation exposed in promising quantum computing material ...

Bristol awarded GBP 8,4 million to strengthen quantum research programmes ...

Researchers build transistor-like gate for quantum information processing - with qudits ...

Fujitsu harnesses Quantum-inspired Digital Annealer technology to optimize output efficiency in power generation for renewable energy devices ...

Quantum photonics by serendipity ...

Focus on Europe

Hungary joins Italian pre-exascale EuroHPC consortium ...

Middleware

SUSE joins the iRODS Consortium ...

Hardware

NSF awards $10 million to SDSC to deploy 'Expanse' supercomputer ...

GRC announces licensing agreement with Nihon Form Services to tailor GRC's data centre immersion cooling technology for the Japanese market ...

High Performance Computing (HPC) arrives at the Edge of Space ...

Arm Flexible Access gives chip designers the freedom to experiment and test before they invest ...

Supermicro brings unprecedented performance and configurability to the intelligent edge for new security, 5G, and AI solutions ...

SwiftStack joins NVIDIA Partner Network ...

Intel and SAP broaden their technology partnership to power enterprises' digital transformation ...

The Pittsburgh Supercomputing Center to host Bridges-2 supercomputers at Next Tier Connect ...

Applications

HPC4Energy Innovation Programme announces first awards for public/private partnerships ...

Atos orchestrates AURAGEN's genomic sequencing calculation solution ...

Who's using Argonne's user facilities? ...

Predicting material properties with quantum Monte Carlo ...

NERSC hosts first 'GPUs for Science' Workshop ...

First Corones Award goes to NERSC computer scientist ...

HPC4Manufacturing project aims at improving thin-film processes used in LED lights ...

Dirty bomb simulator prepares responders ...

LHC experiments present new results on rare Higgs phenomena at 2019 EPS-HEP conference ...

RIT professor honoured with Presidential Early Career Award for Scientists and Engineers ...

A graphene superconductor that plays more than one tune ...

The Cloud

Atos becomes a Microsoft Azure Expert Managed Service Provider (MSP) ...