Back to Table of contents

Primeur weekly 2019-07-15

Quantum computing

Quantum chemistry on quantum computers ...

Quantum computing: Forschungszentrum Jülich and Google announce research partnership ...

The best of both worlds: how to solve real problems on modern quantum computers ...

Rigetti Computing acquires QxBranch to expand full-stack capabilities ...

Focus on Europe

Pioneer satellites launched ...

Inauguration of the Minho Advanced Computing Centre - MACC - in Portugal ...

e-InfraCentral reports on successful EOSC community event in Tallinn ...

ISC High Performance announces David Keyes as 2020 Programme Chair ...

GCS Centres converge on Frankfurt for ISC19 ...

Gauss Centre for Supercomputing to open 22nd call for large-scale projects ...

Middleware

Argonne team breaks record for Globus Data Movement ...

Hardware

Verne Global joins NVIDIA DGX-Ready Data Center Programme as HPC & AI colocation partner ...

NSF funds Bridges-2 supercomputer at Pittsburgh Supercomputing Center ...

Mellanox Capital extends storage ecosystem with investments in CNEX Labs and Pliops ...

Ohio Supercomputer Center staff leading programmes at PEARC19 conference ...

Tachyum closes $25 million Series A round ...

Vantage Data Centers joins NVIDIA DGX-Ready Data Center Colocation Programme ...

World-class research centre opens in Palo Alto ...

Intel's Pohoiki Beach, a 64-chip neuromorphic system, delivers breakthrough results in research tests ...

Applications

SDSC's Comet supercomputer used to model graphene-water interaction ...

US Naval Research Laboratory 'connects the dots' for quantum networks ...

Deep learning-powered 'DeepEC' helps accurately understand enzyme functions ...

Targeting new treatments for concussions by transforming brain pathology ...

NERSC's Cori system reveals integral role of gluons in proton pressure distribution ...

CMU scientists use XSEDE-allocated resources to simulate improved battery components ...

AI Excellence in Europe: 50 million euro to bring world-class researchers together ...

The Cloud

IBM closes landmark acquisition of Red Hat for $34 billion and defines open, hybrid Cloud future ...

USFlash

Intel unveils new tools in its advanced chip packaging toolbox ...

US Naval Research Laboratory 'connects the dots' for quantum networks


Schematic of a nanoscale structure called a 'photonic crystal waveguide' that contains quantum dots that can interact with one another when they are tuned to the same wavelength. Credit: Chul Soo Kim, US Naval Research Laboratory.
9 Jul 2019 Washington - Researchers at the US Naval Research Laboratory (NRL) developed a novel technique that could enable new technologies that use properties of quantum physics for computing, communication and sensing, which may lead to 'neuromorphic' or brain-inspired computing.

The technique squeezes quantum dots, tiny particles made of thousands of atoms, to emit single photons - individual particles of light - with precisely the same colour and with positions that can be less than a millionth of a meter apart.

"This breakthrough could accelerate the development of quantum information technologies and brain-inspired computing", stated Allan Bracker, a chemist at NRL and one of the researchers on the project.

In order for quantum dots to "communicate" (interact), they have to emit light at the same wavelength. The size of a quantum dot determines this emission wavelength. However, just as no two snowflakes are alike, no two quantum dots have exactly the same size and shape - at least when they're initially created.

This natural variability makes it impossible for researchers to create quantum dots that emit light at precisely the same wavelength (colour), said NRL physicist Joel Grim, the lead researcher on the project.

"Instead of making quantum dots perfectly identical to begin with, we change their wavelength afterwards by shrink-wrapping them with laser-crystallized hafnium oxide", Joel Grim stated. "The shrink wrap squeezes the quantum dots, which shifts their wavelength in a very controllable way."

While other scientists have demonstrated "tuning" of quantum dot wavelengths in the past, this is the first time researchers have achieved it precisely in both wavelength and position.

"This means that we can do it not just for two or three, but for many quantum dots in an integrated circuit, which could be used for optical, rather than electrical computing", Allan Bracker stated.

The wide breadth of researcher expertise and science assets at NRL allowed the team to test various approaches to making this quantum dot breakthrough in a relatively short amount of time.

"NRL has in-house facilities for crystal growth, device fabrication, and quantum optical measurements", Joel Grim stated. "This means that we could immediately coordinate our efforts to focus on rapidly improving the material properties."

According to Joel Grim and Allan Bracker, this milestone in the manipulation of quantum dots could lay the groundwork for future strides in a number of areas.

"NRL's new method for tuning the wavelength of quantum dots could enable new technologies that use the strange properties of quantum physics for computing, communication and sensing", Allan Bracker stated. "It may also lead to 'neuromorphic' or brain-inspired computing based on a network of tiny lasers."

Applications in which space and power-efficiency are limiting factors may also benefit from this breakthrough approach, researchers said.

This research was published in the journalNature Materials, " Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance ."
Source: Naval Research Laboratory

Back to Table of contents

Primeur weekly 2019-07-15

Quantum computing

Quantum chemistry on quantum computers ...

Quantum computing: Forschungszentrum Jülich and Google announce research partnership ...

The best of both worlds: how to solve real problems on modern quantum computers ...

Rigetti Computing acquires QxBranch to expand full-stack capabilities ...

Focus on Europe

Pioneer satellites launched ...

Inauguration of the Minho Advanced Computing Centre - MACC - in Portugal ...

e-InfraCentral reports on successful EOSC community event in Tallinn ...

ISC High Performance announces David Keyes as 2020 Programme Chair ...

GCS Centres converge on Frankfurt for ISC19 ...

Gauss Centre for Supercomputing to open 22nd call for large-scale projects ...

Middleware

Argonne team breaks record for Globus Data Movement ...

Hardware

Verne Global joins NVIDIA DGX-Ready Data Center Programme as HPC & AI colocation partner ...

NSF funds Bridges-2 supercomputer at Pittsburgh Supercomputing Center ...

Mellanox Capital extends storage ecosystem with investments in CNEX Labs and Pliops ...

Ohio Supercomputer Center staff leading programmes at PEARC19 conference ...

Tachyum closes $25 million Series A round ...

Vantage Data Centers joins NVIDIA DGX-Ready Data Center Colocation Programme ...

World-class research centre opens in Palo Alto ...

Intel's Pohoiki Beach, a 64-chip neuromorphic system, delivers breakthrough results in research tests ...

Applications

SDSC's Comet supercomputer used to model graphene-water interaction ...

US Naval Research Laboratory 'connects the dots' for quantum networks ...

Deep learning-powered 'DeepEC' helps accurately understand enzyme functions ...

Targeting new treatments for concussions by transforming brain pathology ...

NERSC's Cori system reveals integral role of gluons in proton pressure distribution ...

CMU scientists use XSEDE-allocated resources to simulate improved battery components ...

AI Excellence in Europe: 50 million euro to bring world-class researchers together ...

The Cloud

IBM closes landmark acquisition of Red Hat for $34 billion and defines open, hybrid Cloud future ...

USFlash

Intel unveils new tools in its advanced chip packaging toolbox ...