Back to Table of contents

Primeur weekly 2019-07-15

Quantum computing

Quantum chemistry on quantum computers ...

Quantum computing: Forschungszentrum Jülich and Google announce research partnership ...

The best of both worlds: how to solve real problems on modern quantum computers ...

Rigetti Computing acquires QxBranch to expand full-stack capabilities ...

Focus on Europe

Pioneer satellites launched ...

Inauguration of the Minho Advanced Computing Centre - MACC - in Portugal ...

e-InfraCentral reports on successful EOSC community event in Tallinn ...

ISC High Performance announces David Keyes as 2020 Programme Chair ...

GCS Centres converge on Frankfurt for ISC19 ...

Gauss Centre for Supercomputing to open 22nd call for large-scale projects ...

Middleware

Argonne team breaks record for Globus Data Movement ...

Hardware

Verne Global joins NVIDIA DGX-Ready Data Center Programme as HPC & AI colocation partner ...

NSF funds Bridges-2 supercomputer at Pittsburgh Supercomputing Center ...

Mellanox Capital extends storage ecosystem with investments in CNEX Labs and Pliops ...

Ohio Supercomputer Center staff leading programmes at PEARC19 conference ...

Tachyum closes $25 million Series A round ...

Vantage Data Centers joins NVIDIA DGX-Ready Data Center Colocation Programme ...

World-class research centre opens in Palo Alto ...

Intel's Pohoiki Beach, a 64-chip neuromorphic system, delivers breakthrough results in research tests ...

Applications

SDSC's Comet supercomputer used to model graphene-water interaction ...

US Naval Research Laboratory 'connects the dots' for quantum networks ...

Deep learning-powered 'DeepEC' helps accurately understand enzyme functions ...

Targeting new treatments for concussions by transforming brain pathology ...

NERSC's Cori system reveals integral role of gluons in proton pressure distribution ...

CMU scientists use XSEDE-allocated resources to simulate improved battery components ...

AI Excellence in Europe: 50 million euro to bring world-class researchers together ...

The Cloud

IBM closes landmark acquisition of Red Hat for $34 billion and defines open, hybrid Cloud future ...

USFlash

Intel unveils new tools in its advanced chip packaging toolbox ...

SDSC's Comet supercomputer used to model graphene-water interaction


One layer of graphene is so thin that it takes a million layers to make it one millimeter thick. A simulation done using SDSC's Comet supercomputer shows a cross-sectional view of seven graphene flakes in a water droplet, and that the multi-layered graphene eventually merges together. Credit: Solanky et al. Computational Materials Science, 162(2019) 140-147.
9 Jul 2019 San Diego - Graphene is a two-dimensional material with a single atomic layer of carbon that has a hexagonal structure, similar to a honeycomb. A single layer of graphene, which is more commonly known as a single layer of graphite, such as pencil lead, is 97 percent transparent, stronger than steel, almost weightless, and can conduct electricity.

Those properties make it an ideal candidate for use in many applications - once we better understand its behaviour under various conditions.

Researchers have been looking at the many applications of graphene since it was first isolated in 2004. It is already used in tennis rackets and bicycle wheels. Another area of potential use, however, is drug delivery, which was the focus of a study conducted by researchers at the New Jersey Institute of Technology (NJIT) that was recently published in the Computational Materials Science journal.

NJIT Mechanical and Industrial Engineering Professor Dibakar Datta and his team used the Comet supercomputer at the San Diego Supercomputer Center (SDSC), located at the University of California San Diego, to create detailed simulations of graphene-water interactions to determine if graphene is a good candidate for delivering medicine to a specific part of the body.

While graphene has been extensively studied for many years in water-based solutions, especially in the biomedical sciences field, researchers say they still need to better predict the surface traits of such two-dimensional materials when exposed to water or liquids containing water.

The findings describe in detail how graphene interacts with a droplet of water. "One of the critical issues is how the graphene flakes behave when they are placed inside a water droplet", stated Professor Dibakar Datta. "Doing experiments to understand the graphene-water interaction is expensive and requires a great deal of labour, so to meet this challenge, we performed computer simulations to gain fundamental insight."

Researchers found that the graphene flake came out of the droplet to wrap it, which means that graphene is hydrophobic, or adverse to water. There is a particular interest in graphene wrapping for nanocomposite materials, where the wrapped component can be nanoparticles, nanowires, bacteria, and most interestingly the drug. For the drug delivery, graphene flakes and drugs can be placed insight the water droplet. Because of hydrophobicity, all flakes come out and wrap the droplet containing drugs.

Upon the water drying, graphene flakes completely encapsulate the drug and act as a cargo for the drug-delivery applications. Moreover, depending on the arrangements, when multiple graphene flakes were placed inside a water droplet, all of the flakes tended to come out of the droplet and self-assemble, or clump together. This pattern of self-assembly depends upon the size of the water droplet and the geometry of the graphene flakes placed inside it.

The self-assembled graphene can be used for different graphene-based medical nanodevices. Specifically, these simulations showed researchers that by tuning the geometry and the initial arrangement of graphene flakes inside the water droplet, biomedical engineers, physicians, and other medical personnel can utilize the final graphene wrapping or self-assembly for drug-delivery where a water medium is used, and other medical nanodevice applications.

"We also studied how graphene flakes failed when placed inside the droplet", explained Professor Dibakar Datta. "Graphene wrinkles to wrap around the water molecules, which means that it doesn't undergo brittle or sudden breaking or fractures like graphene does in a non-water medium."

Financial support for this research was received from NJIT. Access to SDSC's Comet supercomputer was done through allocations DMR170065 and DMR180013 from the National Science Foundation's Extreme Science and Engineering Discovery Environment (XSEDE) programme.
Source: San Diego Supercomputer Center - SDSC

Back to Table of contents

Primeur weekly 2019-07-15

Quantum computing

Quantum chemistry on quantum computers ...

Quantum computing: Forschungszentrum Jülich and Google announce research partnership ...

The best of both worlds: how to solve real problems on modern quantum computers ...

Rigetti Computing acquires QxBranch to expand full-stack capabilities ...

Focus on Europe

Pioneer satellites launched ...

Inauguration of the Minho Advanced Computing Centre - MACC - in Portugal ...

e-InfraCentral reports on successful EOSC community event in Tallinn ...

ISC High Performance announces David Keyes as 2020 Programme Chair ...

GCS Centres converge on Frankfurt for ISC19 ...

Gauss Centre for Supercomputing to open 22nd call for large-scale projects ...

Middleware

Argonne team breaks record for Globus Data Movement ...

Hardware

Verne Global joins NVIDIA DGX-Ready Data Center Programme as HPC & AI colocation partner ...

NSF funds Bridges-2 supercomputer at Pittsburgh Supercomputing Center ...

Mellanox Capital extends storage ecosystem with investments in CNEX Labs and Pliops ...

Ohio Supercomputer Center staff leading programmes at PEARC19 conference ...

Tachyum closes $25 million Series A round ...

Vantage Data Centers joins NVIDIA DGX-Ready Data Center Colocation Programme ...

World-class research centre opens in Palo Alto ...

Intel's Pohoiki Beach, a 64-chip neuromorphic system, delivers breakthrough results in research tests ...

Applications

SDSC's Comet supercomputer used to model graphene-water interaction ...

US Naval Research Laboratory 'connects the dots' for quantum networks ...

Deep learning-powered 'DeepEC' helps accurately understand enzyme functions ...

Targeting new treatments for concussions by transforming brain pathology ...

NERSC's Cori system reveals integral role of gluons in proton pressure distribution ...

CMU scientists use XSEDE-allocated resources to simulate improved battery components ...

AI Excellence in Europe: 50 million euro to bring world-class researchers together ...

The Cloud

IBM closes landmark acquisition of Red Hat for $34 billion and defines open, hybrid Cloud future ...

USFlash

Intel unveils new tools in its advanced chip packaging toolbox ...