Back to Table of contents

Primeur weekly 2018-07-30

Focus

Verne Global turns clever SME ideas into Cloud compute reality with hpcDIRECT in free-cooled Icelandic data centres ...

Opin Kerfi goes big with HPC cluster leasing and co-location in Iceland offering free cooling and purity of air ...

Quantum computing

World-first quantum computer simulation of chemical bonds using trapped ions ...

Demon in the details of quantum thermodynamics ...

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits ...

Hardware

BrainChip to showcase neuromorphic computing solutions at MPSoC ...

BrainChip unveils the Akida Development Environment ...

Cray delivers powerful supercomputer dedicated to astronomy to National Astronomical Observatory of Japan ...

Intel stops production of Knights Landing/Xeon Phi processors ...

AFRL and IBM unveil world's largest neuromorphic digital synaptic supercomputer ...

Supermicro joins Board of the Storage Networking Industry Association to accelerate all-flash NVMe storage advancements and adoption ...

Underlying mechanism discovered for magnetic effect in superconducting spintronics ...

Applications

Oracle TimesTen Scaleout sets new performance standard for in-memory databases ...

Artificial Intelligence in Cybersecurity wins Lorentz-eScience competition 2018 ...

ACM's SIGHPC to announce 2018 Fellowship winners ...

International IEEE eScience Conference issues Call for conference travel and attendance grants ...

Texas Women in HPC Chapter formed ...

Researchers find new way to target flu virus ...

Newest supercomputer to help develop fusion energy in international device ...

XSEDE allocates $7,3 million worth of computing time to U.S. researchers in latest allocation cycle ...

Ruby Mendenhall charts progress using HPC and Big Data to flag unidentified historical sources on African American women's lives ...

XSEDE announces 2018-2019 Campus Champions Fellows ...

The Cloud

On-demand high performance Cloud computing for today's most demanding workflows offered by PADT in partnership with Nimbix ...

Share your thoughts and vote on the evolution of EOSC and FAIR data ...

EGI Foundation and Terradue signed a Memorandum of Understanding ...

HPE advances intelligent storage capabilities with AI and Cloud automation for HPE 3PAR ...

World-first quantum computer simulation of chemical bonds using trapped ions


Researchers simulated the energy bonds of molecular hydrogen and lithium hydride. Photo: IQOQI Innsbruck/Harald Ritsch.
24 Jul 2018 Innsbruck - An international group of researchers has achieved the world's first multi-qubit demonstration of a quantum chemistry calculation performed on a system of trapped ions, one of the leading hardware platforms in the race to develop a universal quantum computer.

The research, led by Cornelius Hempel and Thomas Monz, explores a promising pathway for developing effective ways to model chemical bonds and reactions using quantum computers. "Even the largest supercomputers are struggling to model accurately anything but the most basic chemistry. Quantum computers simulating nature, however, unlock a whole new way of understanding matter. They will provide us with a new tool to solve problems in materials science, medicine and industrial chemistry using simulations", stated Cornelius Hempel, now at the University of Sydney. With quantum computing still in its infancy, it remains unclear exactly what problems these devices will be most effective at solving, but most experts agree that quantum chemistry is going to be one of the first 'killer apps' of this emergent technology.

Quantum chemistry is the science of understanding the complicated bonds and reactions of molecules using quantum mechanics. The 'moving parts' of anything but the most-simple chemical processes are beyond the capacity of the biggest and fastest supercomputers. By modelling and understanding these processes using quantum computers, scientists expect to unlock lower-energy pathways for chemical reactions, allowing the design of new catalysts. This will have huge implications for industries, such as the production of fertilizers. Other possible applications include the development of organic solar cells and better batteries through improved materials and using new insights to design personalized medicines.

The team at the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria, used just four qubits on a 20-qubit device to run algorithms to simulate the energy bonds of molecular hydrogen and lithium hydride. These relatively simple molecules are chosen as they are well understood and can be simulated using classical computers. This allows scientists to check the results provided by the quantum computers under development.

Dr. Hempel stated: "This is an important stage of the development of this technology as it is allowing us to set benchmarks, look for errors and plan necessary improvements." Instead of aiming for the most accurate or largest simulation to date, the researchers' work focused on what can go wrong in a promising quantum-classical hybrid algorithm known as variational quantum eigensolver or VQE. By looking at different ways to encode the chemistry problem, the researchers are after ways to suppress errors that arise in today's imperfect quantum computers and stand in the way of near-term usefulness of those machines. "Besides superconducting quantum bits, ion-trap technology is the leading platform for the development of a quantum computer", stated Rainer Blatt, a quantum computer pioneer from Innsbruck. "Quantum chemistry is an example where the advantages of a quantum computer will very soon become apparent in practical applications."

Error suppression is at the core of research pursued in the University of Sydney's Quantum Control Laboratory, led by Professor Michael Biercuk, who recently launched Australia's first private quantum start-up, Q-CTRL. Dr. Hempel, who did the experiments while at the University of Innsbruck, now hopes to leverage Sydney's expertise to improve what can be accomplished with these kinds of simulations.

The results of the research groups led by Rainer Blatt and the American chemist and former Harvard professor Alán Aspuru-Guzik, who has since moved to the University of Toronto, have now been published in the journalPhysical Review Xand were supported by the Austrian Science Fund FWF and the European Commission, among others.

Head of the University of Sydney Nano Institute's quantum science domain, Dr. Ivan Kassal, stated: "This work is a remarkable implementation of one of the most promising approaches to quantum chemistry, proving its mettle on a real quantum-information processor."

He said that Dr Hempel's decision to move to the University of Sydney in 2016 was an excellent addition to the strong quantum team on campus. "Theoretical chemistry and materials science are strengths at this university and they will be augmented by these latest techniques in quantum computation", he stated.

The paper titled " Quantum chemistry calculations on a trapped-ion quantum simulator " is authored by Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, and Christian Roos.
Source: University of Innsbruck

Back to Table of contents

Primeur weekly 2018-07-30

Focus

Verne Global turns clever SME ideas into Cloud compute reality with hpcDIRECT in free-cooled Icelandic data centres ...

Opin Kerfi goes big with HPC cluster leasing and co-location in Iceland offering free cooling and purity of air ...

Quantum computing

World-first quantum computer simulation of chemical bonds using trapped ions ...

Demon in the details of quantum thermodynamics ...

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits ...

Hardware

BrainChip to showcase neuromorphic computing solutions at MPSoC ...

BrainChip unveils the Akida Development Environment ...

Cray delivers powerful supercomputer dedicated to astronomy to National Astronomical Observatory of Japan ...

Intel stops production of Knights Landing/Xeon Phi processors ...

AFRL and IBM unveil world's largest neuromorphic digital synaptic supercomputer ...

Supermicro joins Board of the Storage Networking Industry Association to accelerate all-flash NVMe storage advancements and adoption ...

Underlying mechanism discovered for magnetic effect in superconducting spintronics ...

Applications

Oracle TimesTen Scaleout sets new performance standard for in-memory databases ...

Artificial Intelligence in Cybersecurity wins Lorentz-eScience competition 2018 ...

ACM's SIGHPC to announce 2018 Fellowship winners ...

International IEEE eScience Conference issues Call for conference travel and attendance grants ...

Texas Women in HPC Chapter formed ...

Researchers find new way to target flu virus ...

Newest supercomputer to help develop fusion energy in international device ...

XSEDE allocates $7,3 million worth of computing time to U.S. researchers in latest allocation cycle ...

Ruby Mendenhall charts progress using HPC and Big Data to flag unidentified historical sources on African American women's lives ...

XSEDE announces 2018-2019 Campus Champions Fellows ...

The Cloud

On-demand high performance Cloud computing for today's most demanding workflows offered by PADT in partnership with Nimbix ...

Share your thoughts and vote on the evolution of EOSC and FAIR data ...

EGI Foundation and Terradue signed a Memorandum of Understanding ...

HPE advances intelligent storage capabilities with AI and Cloud automation for HPE 3PAR ...