"I honestly never thought I would be involved in a discovery in my field", Fred Ogden stated. He anticipates this finding will greatly improve the reliability and functionality for hundreds of important water models used by everyone from irrigators and city planners to climate scientists and botanists around the country and the world, as well as trigger a new surge in data collection.
In 1931, Lorenzo Richards developed a beautiful, if numerically complex, equation to calculate how much water makes it into soil over time as rainfall hits the ground surface and filters down toward the water table. That equation, known as the Richards equation and often shortened to RE, has been the only rigorous way to calculate the movement of water in the vadose zone - that is, the unsaturated soil between the water table and the ground surface where most plant roots grow.
Calculating the movement of water in the vadose zone is critical to everything from estimating return flows and aquifer recharge to better managing irrigation and predicting floods. But RE is extremely difficult to solve, and occasionally unsolvable. So, while some high-powered computer models can handle it over small geographic areas, simpler models or those covering large regions must use approximations that compromise accuracy.
For decades, hydrologists and other scientists have pursued a better way to estimate vadose zone water. Cornell University Environment and Ecology Professor Jean-Yves Parlange and Australian soil physicist John Robert Philip battled one another in the literature, proposing new equations and disproving each other - from the 1950s until Philip's untimely death in a traffic accident in 1999. Princeton Environmental Engineering and Water Resources Director Michael Celia published a partial solution in 1990 that is not reliable in all circumstances.
Fred Ogden first worked on the problem in 1994 as a postdoctoral researcher. He teamed with Iranian hydrology engineer Bahram Saghafian, who was finishing a Ph.D. at Colorado State University, to publish an equation that estimates water "suction" in the vadose zone. In the early 2000s, Fred Ogden advised a Ph.D. candidate named Cary Talbot, a researcher with the U.S. Army Corps of Engineers, on a project seeking a solution to the RE. The two developed a new way to represent vadose zone water.
In more recent years, the search continued, and a major National Science Foundation research grant in 2011 enabled Fred Ogden to bring additional experts to the quest and use University of Wyoming's supercomputing power to test prospective solutions.
Then, late last fall, just before the large American Geophysical Union annual meeting, Fred Ogden and his research team discovered a novel solution, an elegant new equation that he thought would equal the RE in accuracy while greatly reducing the computing power needed to run it. He tested this solution with precipitation data from his field site in Panama.
"We ran eight months of Panama data with 263 centimeters of rain through our equation and Hydrus", Fred Ogden stated.
Hydrus is an existing supercomputer model that uses RE. The results his model generated had only 7 millimeters, or two tenths of 1 percent, difference from the results of the Hydrus model that employs Michael Celia's solution of the RE.
"They were almost identical. That's when I knew", he stated. "I felt like the guy who discovered the gold nugget in the American River in California."
What's next for the new equation? First, it is the centerpiece of Fred Ogden's ADHydro model, a massive, supercomputer-powered model that's first simulating the water supply effects of different climate and management scenarios throughout the entire upper Colorado River Basin. From there, Fred Ogden hopes other models will incorporate it, too.
"I think, for rigorous models, it's going to become the standard", he stated. "With help from mathematicians and computer scientists, it will just get faster and better."
Furthermore, new pushes for data collection often follow technological advances, Fred Ogden explained. He hopes this discovery will bring soil science back into relevance for water managers and lead to new soil data collection.
"We now have a reliable way to couple groundwater to surface through the soil that people have been looking for since 1931", Fred Ogden stated, almost in awe of the moment.
Moving up to an Open Science Commons ...
Data Access helps its customers get the most out of their HPC investments ...
The importance of being earnest about the long tail of research ...
Comstor to simply the IP management of clusters ...
Arbor Networks to protect organisations against DDoS attacks ...
Open Science perspective highlighted at e-IRG workshop in Riga ...
IBM, NVIDIA and Mellanox launch Design Center for Big Data and High Performance Computing ...
Launch event of SuperMUC Phase 2 on June 29, 2015 ...
Bright welcomes PC Link Egypt to its Partner Network ...
Agenda announced for PBS Works User Group Meeting ...
CoolIT Systems reaches 50th patent milestone ...
Nallatech 510T FPGA accelerator disrupts the data centre ...
Japan Atomic Energy Agency chooses SGI ICE X for new supercomputer system ...
ADVA Optical Networking unveils all-new Data Center Interconnect solution ...
ADVA Optical Networking launches new NFV demarcation product family ...
Blue Waters simulations suggest there are fewer faint galaxies than expected ...
Researcher discovers groundwater modelling breakthrough ...
Internet of Things Turning New York's Lake George Into Worlds Smartest Lake ...
Producing spin-entangled electrons ...
New method of quantum entanglement packs vastly more data in a photon ...
Computational scientist Peter Coveney keynotes at ISC Cloud & Big Data ...