Back to Table of contents

Primeur weekly 2011-07-18

The Cloud

Rutgers-led experts assemble globe-spanning supercomputer Cloud ...

IBM debuts Cloud-based analytics suite to help companies boost marketing results ...

HP accelerates customers' path to open, hybrid Cloud ...

IBM expands business in Japan with new Cloud data centres ...

VMware unveils VMware vSphere 5 and comprehensive Cloud infrastructure suite ...

Panaya reaches 2,000 ERP systems milestone ...

VMware introduces VMware vSphere Storage Appliance to further simplify IT for small and midsized businesses ...

ET Water celebrates smart irrigation month with the launch of the GNOME Smart Irrigation Calculator ...

From end-user to data centre: Cisco enhances Cloud computing performance, efficiency and security ...

Desktop Grids

Version 4.2.4 of OurGrid middleware released ...

XtremWeb-HEP 7.5.0 released ...

EuroFlash

Lomonosov supercomputer sets world record for performance on Graph500 benchmark ...

European Commission to organize Information Day on Cloud Computing, Internet of Services and Advanced Software Engineering ...

Bright Cluster Manager selected by Freie Universitaet Berlin to manage new Dell-based HPC system ...

Eurotech to receive 4 million euro order from Selex Elsag for Aurora HPC for cyber security applications ...

Medicsight and Ziooft partner in U.S. to offer computer-aided detection with supercomputing functional analytics ...

Imec achieves breakthroughs in enabling future DRAM and RRAM ...

USFlash

IBM Power Systems running Linux outperform competition on standard benchmarks ...

Drexel University chose advanced HPC and Bright Cluster Manager to help unravel the mysteries of the Universe and the world of molecular dynamics ...

Moving data at the speed of science: Berkeley Lab lays foundation for 100 Gbps prototype network ...

Scientists model physics of a key dark-energy probe ...

SDSC visualizations win 'OASCR' Awards at SciDAC 2011 ...

SDSC's Trestles provides rapid turnaround and enhanced performance for diverse researchers ...

Sandia's 'cooler' technology offers fundamental breakthrough in heat transfer ...

Changsha National Supercomputing Center inaugurated ...

Oracle introduces Oracle Exadata Storage Expansion Rack ...

University of Virginia's Olivier Pfister accomplishes breakthrough toward quantum computing ...

GNS Healthcare collaborates with NCI in new approach to lung cancer: supercomputer analysis to aid in matching targeted drugs to patients ...

Wolfram Research announces gridMathematica 8: Adding the power of CUDA over the Grid ...

UC Irvine study points to new approach to influenza's antiviral resistance ...

basysKom, Codero, Gluster and Nixu Open join The Linux Foundation ...

Stanford engineers build a nanoscale device for brain-inspired computing ...

NVIDIA names Stanford University a CUDA Center of Excellence ...

NIST prototype 'optics table on a chip' places microwave photon in 2 colours at once ...

Stanford engineers build a nanoscale device for brain-inspired computing

12 Jul 2011 Stanford - If you doubt the power of the human brain, ponder this for a moment: It takes today's state-of-the-art supercomputer eight-and-a-half minutes to simulate just five seconds of normal human brain activity. Meanwhile, that supercomputer will consume 140,000 times as much electricity as the brain - 1.4 million watts to ten to be exact - to do the work. For sheer processing power and efficiency, nothing quite compares to the human brain.

In a recent paper in the on-line edition of the journalNano Letters, a team of Stanford engineers has demonstrated a new nano-electronic device that emulates human synapses, the brain's computing mechanism. It is a breakthrough that might one day lead to portable, energy-efficient, adaptable and interactive computer systems that can learn rather than merely respond to given programmes.

The Stanford team, led by Professor H.-S. Philip Wong, post-doctoral scholar Duygu Kuzum and graduate students Rakesh Jeyasingh and Byoungil Lee, has been working in a new field known as "brain-inspired computing", which seeks to mimic in computer chips the neurological signaling mechanism of the human synapse.

The researchers are not the first to venture down this path, but they are the first to succeed at creating synaptic devices small enough, with a low-enough energy consumption, and created with a mature technology so as to anticipate commercial viability down the road.

"This development could lead to electronic devices that are so small and so energy efficient that we might be able to make nano-electronic versions of certain parts of the brain to study how they work", stated H.-S. Philip Wong, a professor of electrical engineering. "While you can't alter a biological brain, a synthetic device such as this would allow researchers to change the device parameters to reveal how real brains function."

To understand why this device is such a departure from what went before, it is necessary to understand how computer systems store and compute information. Within the nano-scale circuitry of today's computer chips are billions of tiny electrical components - transistors - that convey information using binary logic. That is, their logic is based on two numbers, either 1 or 0. In electrical terms, a transistor is either "on" or "off".

With enough transistors packed into each chip, programmers can manipulate electrical circuits, turning the billions of transistors on or off as necessary to store and process information - to "compute". The speed and size of computer chips has largely been determined by our ability to create faster transistors and to pack them into smaller spaces.

Synapses are the smallest computational units in the brain, but different from transistors in at least two very important ways. First, they can vary in strength. In other words, synapses can convey far more information than a transistor. Second, synapses can change over time.

"Synapses change based on learning", stated Rakesh Jeyasingh, "something conventional computers cannot do. Once most computer chips are made, you cannot change them easily."

In neuroscience, these two advantages are combined in a concept known as "synaptic plasticity", one of the leading theoretical foundations for how our brains learn, remember and compute.

Like transistor circuits, neurons and synapses are small and packed tightly together, but their circuitry is based on the varying strength of the synapses. The repetition of electrochemical signals traveling the same path will reinforce the synapses in the path and make them more or less likely to fire in the future. As neuroscientists like to say, "Neurons that fire together, wire together."

Synaptic plasticity explains why practice makes perfect. Repeating an electrical pattern through practice strengthens the pattern; therefore, the brain "learns".

"The brain is an amazing machine. Its circuits are far more complex, far more capable, far more

energy-efficient and far more powerful for performing certain tasks than even the very best computer chips based on binary logic", stated Duygu Kuzum.

The Stanford team's device emulates synaptic plasticity using a technology known as "phase-change material", the same technology that allows DVDs and CDs to store information. When juiced with electricity, these materials change their physical characteristics and therefore their electrical conductivity in tiny increments - more electricity, more change.

Rather than the two states of a transistor, however, the Stanford team has demonstrated an ability to control the synaptic device in 1 percent increments - like a lightbulb on a dimmer - meaning each

phase-change synapse can convey at least 100 values.

The device can be manufactured using existing commercial equipment with readily available materials.

"Using well-understood manufacturing processes, we can construct a cross-point architecture allowing three-dimensional stacking of layers that could one day approach the density, compactness and massive parallelism of the human brain", stated Duygu Kuzum.

The researchers do not, however, foresee their new chips replacing existing ones. Instead, they say, they will lead in promising and exciting new directions that are currently out of reach.

"Our long-term goal is not to replace existing chips, but to define a fundamentally distinct form of computational devices and architectures. These new devices and architectures will excel at distributed, data-intensive algorithms that a complex, real-world environment requires, the sort of algorithms that struggle through today's processing bottlenecks", stated Duygu Kuzum.

Among the most intriguing possibilities of these synaptic devices is greater parallelism. The brain is very good at juggling many types of sensory information simultaneously, something computers do very poorly. A supercomputer, by comparison, does not owe its great power to the speed of its processors so much as to splitting up big problems among many processors, each working on a small part of the problem. A more brain-like architecture might allow much smaller chips to think in parallel on many things at the same time.

And where might this lead us? It could lead to real-time brain simulations for use in neuroscience that may augment our understanding acquired from biological measurements. Brain-inspired computers may prove particularly adept at making decisions based on probability, as well.

"This work is a promising step forward in our ability to emulate brain functions using nano-electronic devices and circuits. We can now contemplate a new direction of research which utilizes nano-electronics for the study of neuroscience", stated Professor Wong.

"Beyond neuroscience, more brain-like systems could find use at the intersection of sensing and computation", stated Duygu Kuzum. "Such applications would be able to process huge amounts of sensory data in parallel, meaning computers that can process visual information, recognize images or aid in navigation."

On a more fundamental level, the work is likely to produce a deeper understanding of the physics of gradual control of phase-change materials, allowing for additional fine tuning of the synaptic devices and even greater processing ability. "This is a significant development", stated Professor Wong. "And we are excited to see where it leads."

This work is supported by DARPA SyNAPSE through a collaboration with IBM Research, the National Science Foundation and the Nanoelectronics Research Initiative of the Semiconductor Research Corporation.
Source: Stanford University

Back to Table of contents

Primeur weekly 2011-07-18

The Cloud

Rutgers-led experts assemble globe-spanning supercomputer Cloud ...

IBM debuts Cloud-based analytics suite to help companies boost marketing results ...

HP accelerates customers' path to open, hybrid Cloud ...

IBM expands business in Japan with new Cloud data centres ...

VMware unveils VMware vSphere 5 and comprehensive Cloud infrastructure suite ...

Panaya reaches 2,000 ERP systems milestone ...

VMware introduces VMware vSphere Storage Appliance to further simplify IT for small and midsized businesses ...

ET Water celebrates smart irrigation month with the launch of the GNOME Smart Irrigation Calculator ...

From end-user to data centre: Cisco enhances Cloud computing performance, efficiency and security ...

Desktop Grids

Version 4.2.4 of OurGrid middleware released ...

XtremWeb-HEP 7.5.0 released ...

EuroFlash

Lomonosov supercomputer sets world record for performance on Graph500 benchmark ...

European Commission to organize Information Day on Cloud Computing, Internet of Services and Advanced Software Engineering ...

Bright Cluster Manager selected by Freie Universitaet Berlin to manage new Dell-based HPC system ...

Eurotech to receive 4 million euro order from Selex Elsag for Aurora HPC for cyber security applications ...

Medicsight and Ziooft partner in U.S. to offer computer-aided detection with supercomputing functional analytics ...

Imec achieves breakthroughs in enabling future DRAM and RRAM ...

USFlash

IBM Power Systems running Linux outperform competition on standard benchmarks ...

Drexel University chose advanced HPC and Bright Cluster Manager to help unravel the mysteries of the Universe and the world of molecular dynamics ...

Moving data at the speed of science: Berkeley Lab lays foundation for 100 Gbps prototype network ...

Scientists model physics of a key dark-energy probe ...

SDSC visualizations win 'OASCR' Awards at SciDAC 2011 ...

SDSC's Trestles provides rapid turnaround and enhanced performance for diverse researchers ...

Sandia's 'cooler' technology offers fundamental breakthrough in heat transfer ...

Changsha National Supercomputing Center inaugurated ...

Oracle introduces Oracle Exadata Storage Expansion Rack ...

University of Virginia's Olivier Pfister accomplishes breakthrough toward quantum computing ...

GNS Healthcare collaborates with NCI in new approach to lung cancer: supercomputer analysis to aid in matching targeted drugs to patients ...

Wolfram Research announces gridMathematica 8: Adding the power of CUDA over the Grid ...

UC Irvine study points to new approach to influenza's antiviral resistance ...

basysKom, Codero, Gluster and Nixu Open join The Linux Foundation ...

Stanford engineers build a nanoscale device for brain-inspired computing ...

NVIDIA names Stanford University a CUDA Center of Excellence ...

NIST prototype 'optics table on a chip' places microwave photon in 2 colours at once ...