Back to Table of contents

Primeur weekly 2011-06-06

EuroFlash

Christliches Jugenddorfwerk Deutschlands chooses Altair's HiQube business intelligence solution to manage and analyze its enterprise business information

From dusk to dawn: Ship's bridge simulation reaches a new level with projectiondesign

Quantum knowledge cools computers

PRACE offers access to Europe's fastest supercomputers - third call launched

Record breaking data centre for genome sequencing opened in Norwich

Panaya named Red Herring Top 100 Europe Tech Startup

USFlash

Team solves decades-old molecular mystery linked to blood clotting

Virtual Prairie results published

New IBM Cloud services to address education challenges

Petaflops power to NERSC

ALICE supercomputer runs computationally intensive research with Panasas high performance storage

High-performance computing cluster is University of Iowa's largest 'supercomputer' ever

NCSA deploys new high-performance cluster dedicated to industrial use

Chameleon magnets: Ability to switch magnets 'on' or 'off' could revolutionize computing

MASSIVE supercomputer open for general use in Australia

University of Toronto scientist leads international team in quantum physics first

SGI names Praveen K. Mandal Senior Vice President of Engineering

Platform Computing cited positively in industry report on private Cloud market

Supermicro shapes the future with MicroCloud and multi-GPU SuperServers at Computex Taipei 2011

Mellanox introduces ConnectX-3, the industry's first FDR 56Gb/s InfiniBand and 10/40 Gigabit Ethernet multi-protocol adapter

SDSC researchers co-author and co-edit new book on Geoinformatics

HP brings greater simplicity, flexibility and intelligence to client virtualization portfolio

Oracle Insurance Policy Administration for Life and Annuity delivers superior performance on Oracle Exadata Database Machine X2-2

Dubuque, Iowa and IBM combine analytics, Cloud computing and community engagement to conserve water

Chameleon magnets: Ability to switch magnets 'on' or 'off' could revolutionize computing

27 May 2011 Buffalo - What causes a magnet to be a magnet, and how can we control a magnet's behaviour? These are the questions that University at Buffalo researcher Igor Zutic, a theoretical physicist, has been exploring over many years. He is one of many scientists who believe that magnets could revolutionize computing, forming the basis of high-capacity and low-energy memory, data storage and data transfer devices. In a commentary inScience, Igor Zutic and fellow UB physicist John Cerne, who studies magnetism experimentally, discuss an exciting advancement: A study by Japanese scientists showing that it is possible to turn a material's magnetism on and off at room temperature.

A material's magnetism is determined by a property all electrons possess: something called "spin". Electrons can have an "up" or "down" spin, and a material is magnetic when most of its electrons possess the same spin. Individual spins are akin to tiny bar magnets, which have north and south poles.

In the Japanese study, which also appears in the current issue ofScience, a team led by researchers at Tohoku University added cobalt to titanium dioxide, a nonmagnetic semiconductor, to create a new material that, like a chameleon, can transform from a paramagnet - a nonmagnetic material - to a ferromagnet - a magnetic material - at room temperature.

To achieve change, the researchers applied an electric voltage to the material, exposing the material to extra electrons. As Igor Zutic and John Cerne explain in their commentary, these additional electrons - called "carriers" - are mobile and convey information between fixed cobalt ions that causes the spins of the cobalt electrons to align in one direction.

In an interview, Igor Zutic calls the ability to switch a magnet "on" or "off" revolutionary. He explains the promise of magnet- or spin-based computing technology - called "spintronics" - by contrasting it with conventional electronics.

Modern, electronic gadgets record and read data as a blueprint of ones and zeros that are represented, in circuits, by the presence or absence of electrons. Processing information requires moving electrons, which consumes energy and produces heat.

Spintronic gadgets, in contrast, store and process data by exploiting electrons' "up" and "down" spins, which can stand for the ones and zeros devices read. Future energy-saving improvements in data processing could include devices that process information by "flipping" spin instead of shuttling electrons around.

In theirSciencecommentary, Igor Zutic and John Cerne write that chameleon magnets could "help us make more versatile transistors and bring us closer to the seamless integration of memory and logic by providing smart hardware that can be dynamically reprogrammed for optimal performance of a specific task."

"Large applied magnetic fields can enforce the spin alignment in semiconductor transistors", they write. "With chameleon magnets, such alignment would be tunable and would require no magnetic field and could revolutionize the role ferromagnets play in technology."

In an interview, Igor Zutic said that applying an electric voltage to a semiconductor injected with cobalt or other magnetic impurities may be just one way of creating a chameleon magnet. Applying heat or light to such a material could have a similar effect, freeing electrons that can then convey information about spin alignment between ions, he said.

The so-far elusive heat-based chameleon magnets were first proposed by Igor Zutic in 2002. With his colleagues, Andre Petukhov of the South Dakota School of Mines and Technology, and Steven Erwin of the Naval Research Laboratory, he elucidated the behaviour of such magnets in a 2007 paper.

The concept of non-magnetic materials becoming magnetic as they heat up is counterintuitive, Igor Zutic stated. Scientists had long assumed that orderly, magnetic materials would lose their neat, spin alignments when heated - just as orderly, crystalline ice melts into disorderly water as temperatures rise.

The carrier electrons, however, are the key. Because heating a material introduces additional carriers that can cause nearby electrons to adopt aligned spins, heating chameleon materials - up to a certain temperature - should actually cause them to become magnetic, Igor Zutic explained. His research on magnetism is funded by the Department of Energy, Office of Naval Research, Air Force Office of Scientific Research and the National Science Foundation.
Source: University at Buffalo

Back to Table of contents

Primeur weekly 2011-06-06

EuroFlash

Christliches Jugenddorfwerk Deutschlands chooses Altair's HiQube business intelligence solution to manage and analyze its enterprise business information

From dusk to dawn: Ship's bridge simulation reaches a new level with projectiondesign

Quantum knowledge cools computers

PRACE offers access to Europe's fastest supercomputers - third call launched

Record breaking data centre for genome sequencing opened in Norwich

Panaya named Red Herring Top 100 Europe Tech Startup

USFlash

Team solves decades-old molecular mystery linked to blood clotting

Virtual Prairie results published

New IBM Cloud services to address education challenges

Petaflops power to NERSC

ALICE supercomputer runs computationally intensive research with Panasas high performance storage

High-performance computing cluster is University of Iowa's largest 'supercomputer' ever

NCSA deploys new high-performance cluster dedicated to industrial use

Chameleon magnets: Ability to switch magnets 'on' or 'off' could revolutionize computing

MASSIVE supercomputer open for general use in Australia

University of Toronto scientist leads international team in quantum physics first

SGI names Praveen K. Mandal Senior Vice President of Engineering

Platform Computing cited positively in industry report on private Cloud market

Supermicro shapes the future with MicroCloud and multi-GPU SuperServers at Computex Taipei 2011

Mellanox introduces ConnectX-3, the industry's first FDR 56Gb/s InfiniBand and 10/40 Gigabit Ethernet multi-protocol adapter

SDSC researchers co-author and co-edit new book on Geoinformatics

HP brings greater simplicity, flexibility and intelligence to client virtualization portfolio

Oracle Insurance Policy Administration for Life and Annuity delivers superior performance on Oracle Exadata Database Machine X2-2

Dubuque, Iowa and IBM combine analytics, Cloud computing and community engagement to conserve water