Back to Table of contents

Primeur weekly 2017-05-15

Special

NVIDIA ushers in new era of robotics, with breakthroughs making It easier to build and train intelligent machines ...

NVIDIA and Toyota collaborate to accelerate market introduction of autonomous cars ...

NVIDIA launches GPU Cloud platform to simplify AI development ...

NVIDIA advances AI computing revolution with new Volta-based DGX systems ...

NVIDIA launches revolutionary Volta GPU platform, fueling next era of AI and high performance computing ...

NVIDIA to train 100,000 developers on deep learning in 2017 ...

NVIDIA paves path to AI cities with Metropolis Edge-to-Cloud platform for video analytics ...

NVIDIA Tesla accelerators on IBM Cloud demonstrate advanced performance for training deep learning models ...

BSC and NVIDIA a step forward to the interactive simulation of humans ...

Quantum computing

Refrigerator for quantum computers discovered ...

Focus on Europe

EoCoE service page open for PRACE user community ...

Spring 2017 edition of the e-IRG newsletter available ...

PRACE to issue Annual Report 2016 ...

Middleware

Bright Computing announces 8.0 release - Setting new standard for automation and ease-of-use for Linux-based clusters and public, private and hybrid Clouds ...

CETIAT France chooses Bright Cluster Manager for aerodynamics and fluid mechanics HPC environment ...

2016 National Research Infrastructure Roadmap for Australia is now available ...

Hardware

Cray delivers production-ready AI with new Cray CS-Storm accelerated cluster supercomputers ...

Inspur to unveil 2U 8-GPU AI supercomputer at GTC 2017 ...

Inspur unveiled AIStation, AI deep learning training cluster management software at GTC 2017 ...

Supermicro systems deliver 170 Tflop/s FP16 of peak performance for artificial intelligence, and deep learning at GTC 2017 ...

NCSA's Blue Waters project provides $1.08 billion direct return to Illinois' economy ...

Applications

SDSC's Comet helps replicate brain circuitry to direct a realistic prosthetic arm ...

University of Wyoming graduate student one of 36 selected for CyberGIS Summer School ...

Supercomputing mimics berkelium experiments to validate new find ...

'Inverse designing' spontaneously self-assembling materials ...

Story of silver birch from genomic Big Data ...

Targeted, high-energy cancer treatments get a supercomputing boost ...

Computer accurately identifies and delineates breast cancers on digital tissue slides ...

Sound over silicon: Computing's wave of the future ...

USC Viterbi School of Engineering faculty awarded multiple MURI grants ...

New funding announced for Digital Earth Australia ...

NCSA releases annual report highlighting scientific exploration and breakthroughs enabled by the Blue Waters Project ...

Supercomputer can disprove the theory of sunspot formation ...

The Cloud

Inspur to release InCloud OS 5.0 "F.A.S.T" at the 2017 OpenStack Summit ...

IBM extends data science collaborative workspace to the private Cloud ...

Pointwise and Envenio Join Forces on Demand ...

'Inverse designing' spontaneously self-assembling materials

This is self-assembled cluster fluid. Credit: Ryan B. Jadrich.9 May 2017 Washington, D.C. - Researchers at the University of Texas at Austin are exploring how molecular simulations with the latest optimization strategies can create a more systematic way of discovering new materials that exhibit specific, desired properties.

More specifically, they did so by recasting the design goal to the microscopic, asking which interactions between constituent particles can cause them to spontaneously "self-assemble" into a bulk material with a particular property. To find the answer, reported this week inThe Journal of Chemical Physics, from AIP Publishing, they decided to zero in on how composite particles spatially organize themselves.

"Our technical inspiration came from a very different field of research - the modelling and simulation of biomolecules", stated Thomas Truskett, a professor in the McKetta Department of Chemical Engineering and co-author of the work. "Experts within that field had developed an array of tools for using molecular simulations to 'learn' which simplified-model interactions could reproduce the exquisite structural properties of large biomolecules."

They recognized this modeling approach could be used to identify simpler interparticle interactions that would spontaneously self-assemble into the more complex structures.

"Self-assembly is a phenomenon by which particles, such as atoms and molecules, spontaneously organize themselves into complex multidimensional architectures", stated Thomas Truskett. "Freezing water - crystallizing it - is one everyday example, and the manner in which water molecules arrange themselves under prescribed external conditions is dictated by their interactions or forces."

To expand the possibilities for self-assembly, the group investigated another class of particles called "colloids", which typically refer to larger molecules or nanoparticles suspended in a fluid.

"Colloids are interesting for self-assembly and stand apart from their smaller atomic and molecular cousins because their interactions are highly tunable", stated Ryan Jadrich, a postdoctoral fellow in the McKetta Department of Chemical Engineering. "By carefully tailoring colloidal particle interactions, we can exert unprecedented control over the microscopic organizational details to greatly influence bulk material properties."

Forward design has been the de facto approach to engineering self-assembly for many years.

"In a very simplified interpretation, forward design amounts to fabricating particles with novel interactions and then checking to see what they assemble into - hopefully something desirable", Thomas Truskett stated. "Researchers' physical intuition can help speed the process of realizing desired materials, but this approach is costly from a time perspective and requires some degree of luck or great expense."

Inverse design, which the group's work addresses, quite literally attempts the problem in reverse.

"Human researchers do what they're good at: envisioning novel and useful particle architectures. And computers do what they're good at: solving complex optimization problems", Ryan Jadrich stated.

According to Thomas Truskett, one of the main benefits of the new inverse design approach is that it provides a highly general framework that can be applied in targeting self-assembly of crystalline or fluid materials "on the fly".

"The method 'learns' everything it needs as the relevant data naturally emerges from an iterative, simulation-driven framework", he stated. "An interesting corollary is that no precompiled auxiliary database of information is required - such data repositories were an undesirable prerequisite for earlier crystal inverse design approaches."

They computationally assembled some downright intriguing particle architectures, including one described as "Swiss cheese".

"In this case, we discovered interactions that prompted particles to self-assemble into a matrix surrounding spherical holes, a.k.a. pores or cavities", Thomas Truskett stated. "Remarkably, these pores ordered into a crystalline arrangement, while the smaller 'real' particles remained in a disordered, fluidic state percolating around the pores."

Although inverse design is a relatively young and active area of research, headway is already being made toward a general and practically useful framework, according to Ryan Jadrich, where their work represents one emerging strategy. Inverse design is part of an emerging trend across scientific disciplines, using computational machine learning and statistical interference to accelerate discovery.

"Inverse design enables the discovery of much more complex materials, on computers, than ever before, and this is a trend we believe will continue", he stated. "Such tools won't soon replace human researchers, but allow researchers to focus on other, often more interesting tasks that demand creative design. The brunt of the work, which amounts to teasing out subtle details, finding patterns, or performing complex calculations, can now be relegated to automation."

The article, " Probabilistic inverse design for self-assembling materials ", is authored by R.B. Jadrich, B.A. Lindquist and T.M. Truskett. The article appeared inThe Journal of Chemical Physicson May, 9, 2017 - DOI: 10.1063/1.4981796.

Source: American Institute of Physics

Back to Table of contents

Primeur weekly 2017-05-15

Special

NVIDIA ushers in new era of robotics, with breakthroughs making It easier to build and train intelligent machines ...

NVIDIA and Toyota collaborate to accelerate market introduction of autonomous cars ...

NVIDIA launches GPU Cloud platform to simplify AI development ...

NVIDIA advances AI computing revolution with new Volta-based DGX systems ...

NVIDIA launches revolutionary Volta GPU platform, fueling next era of AI and high performance computing ...

NVIDIA to train 100,000 developers on deep learning in 2017 ...

NVIDIA paves path to AI cities with Metropolis Edge-to-Cloud platform for video analytics ...

NVIDIA Tesla accelerators on IBM Cloud demonstrate advanced performance for training deep learning models ...

BSC and NVIDIA a step forward to the interactive simulation of humans ...

Quantum computing

Refrigerator for quantum computers discovered ...

Focus on Europe

EoCoE service page open for PRACE user community ...

Spring 2017 edition of the e-IRG newsletter available ...

PRACE to issue Annual Report 2016 ...

Middleware

Bright Computing announces 8.0 release - Setting new standard for automation and ease-of-use for Linux-based clusters and public, private and hybrid Clouds ...

CETIAT France chooses Bright Cluster Manager for aerodynamics and fluid mechanics HPC environment ...

2016 National Research Infrastructure Roadmap for Australia is now available ...

Hardware

Cray delivers production-ready AI with new Cray CS-Storm accelerated cluster supercomputers ...

Inspur to unveil 2U 8-GPU AI supercomputer at GTC 2017 ...

Inspur unveiled AIStation, AI deep learning training cluster management software at GTC 2017 ...

Supermicro systems deliver 170 Tflop/s FP16 of peak performance for artificial intelligence, and deep learning at GTC 2017 ...

NCSA's Blue Waters project provides $1.08 billion direct return to Illinois' economy ...

Applications

SDSC's Comet helps replicate brain circuitry to direct a realistic prosthetic arm ...

University of Wyoming graduate student one of 36 selected for CyberGIS Summer School ...

Supercomputing mimics berkelium experiments to validate new find ...

'Inverse designing' spontaneously self-assembling materials ...

Story of silver birch from genomic Big Data ...

Targeted, high-energy cancer treatments get a supercomputing boost ...

Computer accurately identifies and delineates breast cancers on digital tissue slides ...

Sound over silicon: Computing's wave of the future ...

USC Viterbi School of Engineering faculty awarded multiple MURI grants ...

New funding announced for Digital Earth Australia ...

NCSA releases annual report highlighting scientific exploration and breakthroughs enabled by the Blue Waters Project ...

Supercomputer can disprove the theory of sunspot formation ...

The Cloud

Inspur to release InCloud OS 5.0 "F.A.S.T" at the 2017 OpenStack Summit ...

IBM extends data science collaborative workspace to the private Cloud ...

Pointwise and Envenio Join Forces on Demand ...