"It is a fascinating protein complex. I have been studying membrane proteins and pumps for the past several years, all at the individual protein level", Fatemeh Khalili-Araghi stated. "We know a lot about the function of its individual proteins or domains in the complex structure, but there is little known about the function of the complex as a whole and how these domains are structurally coupled together."
The research focuses solely on the way that efflux pumps function.
"We wanted to get the full picture and study how this complex structure transports the drugs out of bacteria to understand one of the mechanisms by which bacteria become resistant to antibiotics", Fatemeh Khalili-Araghi stated.
Fatemeh Khalili-Araghi is using the Blue Waters supercomputer at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign to run multiple simulations at the same time, something that she wouldn't be able to do on other computers.
"We had to have many, many simulations running at the same time in parallel", Fatemeh Khalili-Araghi stated. "If you were going to do that in any other machine, you would have to run them in series, which would mean that we'd have to wait forever for them to finish."
While previous research was present that allowed researchers to have access to the atomic structure of individual domains, or the way that atoms are arranged, the atomic structure of the entire complex was not known except through very low-resolution electron microscopy images. Using the low-resolution images of the complex and molecular dynamics simulation, Fatemeh Khalili-Araghi was able to put together a high quality map of the system as a whole with atomic resolution.
In contrast to other membrane systems, the protein complex or efflux pumps used by bacteria to expel unwanted material are complex, according to Fatemeh Khalili-Araghi. They span the bacterial membrane by having a channel in the outer membrane and a proton pump in the inner membrane of bacteria that are connected by a fusion protein in the middle. The fusion protein creates a tunnel between the inner and outer membrane proteins. The inner membrane pump uses the proton gradient between the two sides of the membrane to actively transport the drugs out of the cell and into the tunnel, which in turn transports the drugs to the outer membrane channel. The channel will then expel the drugs out of the cell if it is open.
Their results so far have shown that in contrast to the existing model, the fusion protein is the only connection between the inner membrane pump and outer membrane channel. As such, the fusion protein plays an active role in transferring conformational changes of the inner pump to the outer membrane that results in opening of the channel to the extracellular side.
Fatemeh Khalili-Araghi and her team are studying the transport pathway of two antibiotics to understand how the shape of the molecule affects how it is transported, seeing as the pump is not very selective and "allow the majority of these compounds that look like these molecules to go through them", stated Fatemeh Khalili-Araghi.
New design of primitive quantum computer finds application ...
Scientists take a major leap toward a perfect quantum metamaterial ...
A compact, efficient single photon source that operates at ambient temperatures on a chip ...
Spring 2016 edition of the e-IRG newsletter available ...
Up to 150,000 euro up for grabs per European SME to fund CPS experiments ...
Alder Hey Children's Hospital set to become UK's first cognitive hospital ...
Leibniz Supercomputing Centre to host Workshop on HPC for Water Related Hazards ...
Allinea tools to unleash research potential for Flemish supercomputer users ...
NSF grant to enable research computing infrastructure dedicated to science and engineering ...
Leading thinkers convene in UK to tackle supercomputer efficiency barriers ...
Call for Papers for PGAS Applications Workshop ...
IBM scientists achieve storage memory breakthrough ...
The Sun's magnetic field during the grand minimum is in fact at its maximum ...
IBM and UMBC collaborate to advance cognitive cybersecurity ...
Ten PhD students from across the USA selected as Blue Waters Graduate Fellows ...
Exxact Corporation extends its deep learning solutions with NVIDIA DGX-1 deep learning system ...
Engine design takes a major leap at Argonne ...
IBM Watson to tackle cybercrime ...