Back to Table of contents

Primeur weekly 2015-05-11

Special

German Tier 2 supercomputer centres should form a collaboration network for High-Performance Computing ...

The Cloud

ANSYS 16.1 delivers enterprise simulation On The Cloud ...

IBM Watson establishes hybrid Cloud capabilities to accelerate new insights for the enterprise ...

HP and SAP accelerate journey to SAP S/4HANA on HP Helion managed Cloud ...

Industrial virtual factory lowers costs and reduces emissions ...

HP makes performance and load testing solutions available on the Microsoft Azure Marketplace ...

EuroFlash

High Performance computing element of the European Commission's new Digital Single Market Strategy for Europe ...

Biologists are increasingly becoming data scientists ...

Announcing the Hans Meuer Award winning Research Paper ...

ADVA Optical Networking launches ConnectGuard for ultimate data protection ...

German researchers use IBM Big Data solution to manage world's largest trove of climate data ...

15 million euro boost for European astronomy ...

USFlash

Gartner names CoolIT Systems a Cool Vendor in Data Center Management, Power and Cooling Report ...

University of Arkansas acquires new supercomputer for research support ...

OpenMP 4.0 examples published ...

Cray names Nick Gorga to Vice President of Asia Pacific Sales ...

Cray reports first quarter financial results ...

Cray Urika-XA system wins Best of Show Award at Bio-IT World ...

Purdue's eighth supercomputing cluster in eight years not quite 'minute' Rice, but built in a day ...

UT Austin researchers use supercomputing to assess the impact of climate change on the country's growing season ...

IBM Watson Health, Epic and Mayo Clinic to unlock new insights from electronic health records ...

Scientists get ultra-fast and robust network across the Atlantic Ocean ...

Nepal disaster relief efforts to be aided by glacier researchers ...

Clinicians tap Watson to accelerate DNA analysis and inform personalized treatment options for patients ...

New chip architecture may provide foundation for quantum computer ...

The next step in DNA computing: GPS mapping? ...

IBM unveils Power Systems solutions to support SAP HANA ...

New chip architecture may provide foundation for quantum computer


D. Youngner, Honeywell
5 May 2015 Washington - Quantum computers are in theory capable of simulating the interactions of molecules at a level of detail far beyond the capabilities of even the largest supercomputers today. Such simulations could revolutionize chemistry, biology and material science, but the development of quantum computers has been limited by the ability to increase the number of quantum bits, or qubits, that encode, store and access large amounts of data.

In a paper appearing in theJournal of Applied Physics, from AIP Publishing, a team of researchers at Georgia Tech Research Institute and Honeywell International have demonstrated a new device that allows more electrodes to be placed on a chip - an important step that could help increase qubit densities and bring us one step closer to a quantum computer that can simulate molecules or perform other algorithms of interest.

"To write down the quantum state of a system of just 300 qubits, you would need 2^300 numbers, roughly the number of protons in the known universe, so no amount of Moore's Law scaling will ever make it possible for a classical computer to process that many numbers", stated Nicholas Guise, who led the research. "This is why it's impossible to fully simulate even a modest sized quantum system, let alone something like chemistry of complex molecules, unless we can build a quantum computer to do it."

While existing computers use classical bits of information, quantum computers use "quantum bits" or qubits to store information. Classical bits use either a 0 or 1, but a qubit, exploiting a weird quantum property called superposition, can actually be in both 0 and 1 simultaneously, allowing much more information to be encoded. Since qubits can be correlated with each other in a way that classical bits cannot, they allow a new sort of massively parallel computation, but only if many qubits at a time can be produced and controlled. The challenge that the field has faced is scaling this technology up, much like moving from the first transistors to the first computers.

One leading qubit candidate is individual ions trapped inside a vacuum chamber and manipulated with lasers. The scalability of current trap architectures is limited since the connections for the electrodes needed to generate the trapping fields come at the edge of the chip, and their number are therefore limited by the chip perimeter.

The GTRI/Honeywell approach uses new microfabrication techniques that allow more electrodes to fit onto the chip while preserving the laser access needed.

The team's design borrows ideas from a type of packaging called a ball grid array (BGA) that is used to mount integrated circuits. The ball grid array's key feature is that it can bring electrical signals directly from the backside of the mount to the surface, thus increasing the potential density of electrical connections.

The researchers also freed up more chip space by replacing area-intensive surface or edge capacitors with trench capacitors and strategically moving wire connections.

The space-saving moves allowed tight focusing of an addressing laser beam for fast operations on single qubits. Despite early difficulties bonding the chips, a solution was developed in collaboration with Honeywell, and the device was trapping ions from the very first day.

The team was excited with the results. "Ions are very sensitive to stray electric fields and other noise sources, and a few microns of the wrong material in the wrong place can ruin a trap. But when we ran the BGA trap through a series of benchmarking tests we were pleasantly surprised that it performed at least as well as all our previous traps", Nicholas Guise stated.

Working with trapped ion qubits currently requires a room full of bulky equipment and several graduate students to make it all run properly, so the researchers say much work remains to be done to shrink the technology. The BGA project demonstrated that it's possible to fit more and more electrodes on a surface trap chip while wiring them from the back of the chip in a compact and extensible way. However, there are a host of engineering challenges that still need to be addressed to turn this into a miniaturized, robust and nicely packaged system that would enable quantum computing, the researchers say.

In the meantime, these advances have applications beyond quantum computing. "We all hope that someday quantum computers will fulfill their vast promise, and this research gets us one step closer to that", Nicholas Guise stated. "But another reason that we work on such difficult problems is that it forces us to come up with solutions that may be useful elsewhere. For example, microfabrication techniques like those demonstrated here for ion traps are also very relevant for making miniature atomic devices like sensors, magnetometers and chip-scale atomic clocks."

The article, "Ball-grid array architecture for microfabricated ion traps", is authored by Nicholas D. Guise, Spencer D. Fallek, Kelly E. Stevens, K. R. Brown, Curtis Volin, Alexa W. Harter, Jason M. Amini, Robert E. Higashi, Son Thai Lu, Helen M. Chanhvongsak, Thi A. Nguyen, Matthew S. Marcus, Thomas R. Ohnstein and Daniel W. Youngner. It appeared in theJournal of Applied Physicson May 5, 2015 (DOI: 10.1063/1.4917385). It can be accessed at http://scitation.aip.org/content/aip/journal/jap/117/17/10.1063/1.4917385 .

The researchers on this paper are affiliated with the Georgia Tech Research Institute in Atlanta, Georgia and Honeywell International in Golden Valley, Minnesota. This work was funded by the Intelligence Advanced Research Projects Activity (IARPA).

Source: American Institute of Physics

Back to Table of contents

Primeur weekly 2015-05-11

Special

German Tier 2 supercomputer centres should form a collaboration network for High-Performance Computing ...

The Cloud

ANSYS 16.1 delivers enterprise simulation On The Cloud ...

IBM Watson establishes hybrid Cloud capabilities to accelerate new insights for the enterprise ...

HP and SAP accelerate journey to SAP S/4HANA on HP Helion managed Cloud ...

Industrial virtual factory lowers costs and reduces emissions ...

HP makes performance and load testing solutions available on the Microsoft Azure Marketplace ...

EuroFlash

High Performance computing element of the European Commission's new Digital Single Market Strategy for Europe ...

Biologists are increasingly becoming data scientists ...

Announcing the Hans Meuer Award winning Research Paper ...

ADVA Optical Networking launches ConnectGuard for ultimate data protection ...

German researchers use IBM Big Data solution to manage world's largest trove of climate data ...

15 million euro boost for European astronomy ...

USFlash

Gartner names CoolIT Systems a Cool Vendor in Data Center Management, Power and Cooling Report ...

University of Arkansas acquires new supercomputer for research support ...

OpenMP 4.0 examples published ...

Cray names Nick Gorga to Vice President of Asia Pacific Sales ...

Cray reports first quarter financial results ...

Cray Urika-XA system wins Best of Show Award at Bio-IT World ...

Purdue's eighth supercomputing cluster in eight years not quite 'minute' Rice, but built in a day ...

UT Austin researchers use supercomputing to assess the impact of climate change on the country's growing season ...

IBM Watson Health, Epic and Mayo Clinic to unlock new insights from electronic health records ...

Scientists get ultra-fast and robust network across the Atlantic Ocean ...

Nepal disaster relief efforts to be aided by glacier researchers ...

Clinicians tap Watson to accelerate DNA analysis and inform personalized treatment options for patients ...

New chip architecture may provide foundation for quantum computer ...

The next step in DNA computing: GPS mapping? ...

IBM unveils Power Systems solutions to support SAP HANA ...