Back to Table of contents

Primeur weekly 2019-04-15

Quantum computing

U.S. research team expands quantum network with successful long-distance entanglement experiment ...

2D gold quantum dots are atomically tunable with nanotubes ...

New algorithm optimizes quantum computing problem-solving ...

Brookhaven joins the IBM Q Network Hub at Oak Ridge National Lab ...

Focus on Europe

Taurus Group acquires HPC specialist ClusterVision, broadening its global value-added strategy ...

eInfraCentral calls for participation to EOSC community event on June 20, 2019 ...

A significant European supercomputing grant to nanoscience researchers for investigations of atomically precise nanocatalysts ...

WekaIO expands AI and HPC storage solutions in Central Europe ...

Exscalate helps Epidemics research ...

Middleware

Spectra announces new data mover for BlackPearl solution and certifies more BlackPearl clients ...

Hardware

Cray supercomputers to feature new Intel Xeon Scalable processors ...

Supermicro introduces over 100 resource-saving server and storage systems with new 2nd generation Intel Xeon Scalable processors ...

Spectra Logic announces new tape features and functionality, setting the standard for tape innovation ...

Fujitsu begins production of Post-K ...

Intel Optane technology and Intel QLC NAND technology come together on a single drive ...

Largest, fastest array of microscopic 'traffic cops' for optical communications ...

Applications

Melissa Cragin joins SDSC's Research Data Services Group ...

NVIDIA and American College of Radiology AI-LAB team to accelerate adoption of AI in diagnostic radiology across thousands of hospitals ...

TACC's supercomputers play role in Event Horizon Telescope's first-ever black hole image ...

ATOM Consortium combines forces with NVIDIA to accelerate AI in drug discovery ...

The Cloud

SDSC's Phylogenetics Science Gateway awarded NSF/Internet2 grant ...

HPE and Nutanix sign global agreement to deliver hybrid Cloud as a Service ...

HPE and Google Cloud partner to simplify hybrid Cloud ...

Atos announces Open Hybrid Cloud solution enabling enterprises to move to Google Cloud ...

Atos and CloudBees partner to provide modern application development on Google Cloud ...

Intel and Google Cloud announce strategic partnership to accelerate hybrid Cloud ...

Scientific computing in the Cloud gets down to Earth ...

Largest, fastest array of microscopic 'traffic cops' for optical communications


The photonic switch is manufactured using a technique called photolithography, in which each "light switch" structure is etched into a silicon wafer. Each light gray square on the wafer contains 6,400 of these switches. Credit Photo: Kyungmok Kwon.
12 Apr 2019 Berkeley - Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers faster and more efficiently than ever. This optical "traffic cop" could one day revolutionize how information travels through data centres and high-performance supercomputers that are used for artificial intelligence and other data-intensive applications.

The photonic switch is built with more than 50,000 microscopic "light switches", each of which directs one of 240 tiny beams of light to either make a right turn when the switch is on, or to pass straight through when the switch is off. The 240-by-240 array of switches is etched into a silicon wafer and covers an area only slightly larger than a postage stamp.

"For the first time in a silicon switch, we are approaching the large switches that people can only build using bulk optics", stated Ming Wu, professor of electrical engineering and computer sciences at UC Berkeley and senior author of the paper, which appears in the journalOptica. "Our switches are not only large, but they are 10,000 times faster, so we can switch data networks in interesting ways that not many people have thought about."

Currently, the only photonic switches that can control hundreds of light beams at once are built with mirrors or lenses that must be physically turned to switch the direction of light. Each turn takes about one-tenth of a second to complete, which is eons compared to electronic data transfer rates. The new photonic switch is built using tiny integrated silicon structures that can switch on and off in a fraction of a microsecond, approaching the speed necessary for use in high-speed data networks.

Data centres - where our photos, videos and documents saved in the cloud are stored - are composed of hundreds of thousands of servers that are constantly sending information back and forth. Electrical switches act as traffic cops, making sure that information sent from one server reaches the target server and doesn't get lost along the way.

But as data transfer rates continue to grow, we are reaching the limits of what electrical switches can handle, Ming Wu said.

"Electrical switches generate so much heat, so even though we could cram more transistors onto a switch, the heat they generate is starting to pose certain limits", he stated. "Industry expects to continue the trend for maybe two more generations and, after that, something more fundamental has to change. Some people are thinking optics can help."

Server networks could instead be connected by optical fibers, with photonic switches acting as the traffic cops, Ming Wu said. Photonic switches require very little power and don't generate any heat, so they don't face the same limitations as electrical switches. However, current photonic switches cannot accommodate as many connections and also are plagued by signal loss - essentially "dimming" the light as it passes through the switch - which makes it hard to read the encoded data once it reaches its destination.

In the new photonic switch, beams of light travel through a crisscrossing array of nanometer-thin channels until they reach these individual light switches, each of which is built like a microscopic freeway overpass. When the switch is off, the light travels straight through the channel. Applying a voltage turns the switch on, lowering a ramp that directs the light into a higher channel, which turns it 90 degrees. Another ramp lowers the light back into a perpendicular channel.

"It's literally like a freeway ramp", Ming Wu said. "All of the light goes up, makes a 90-degree turn and then goes back down. And this is a very efficient process, more efficient than what everybody else is doing on silicon photonics. It is this mechanism that allows us to make lower-loss switches."

The team uses a technique called photolithography to etch the switching structures into silicon wafers. The researchers can currently make structures in a 240-by-240 array - 240 light inputs and 240 light outputs - with limited light loss, making it the largest silicon-based switch ever reported. They are working on perfecting their manufacturing technique to create even bigger switches.

"Larger switches that use bulk optics are commercially available, but they are very slow, so they are usable in a network that you don't change too frequently", Ming Wu said. "Now, computers work very fast, so if you want to keep up with the computer speed, you need much faster switch response. Our switch is the same size, but much faster, so it will enable new functions in data centre networks."

Co-lead authors on the paper are Tae Joon Seok of the Gwangju Institute of Science and Technology and Kyungmok Kwon, a postdoctoral researcher and Bakar Innovation Fellow at UC Berkeley. Other co-authors are Johannes Henriksson and Jianheng Luo of UC Berkeley.

This research was funded by the Advanced Research Projects Agency-Energy (ARPA- E) (DE-AR0000849), the National Science Foundation (NSF) (1827633, EEC-0812072), Google Faculty Research Award, UC Berkeley Bakar Fellows Programme and the National Research Foundation of Korea (NRF) (2018R1C1B6005302).
Source: University of California at Berkeley

Back to Table of contents

Primeur weekly 2019-04-15

Quantum computing

U.S. research team expands quantum network with successful long-distance entanglement experiment ...

2D gold quantum dots are atomically tunable with nanotubes ...

New algorithm optimizes quantum computing problem-solving ...

Brookhaven joins the IBM Q Network Hub at Oak Ridge National Lab ...

Focus on Europe

Taurus Group acquires HPC specialist ClusterVision, broadening its global value-added strategy ...

eInfraCentral calls for participation to EOSC community event on June 20, 2019 ...

A significant European supercomputing grant to nanoscience researchers for investigations of atomically precise nanocatalysts ...

WekaIO expands AI and HPC storage solutions in Central Europe ...

Exscalate helps Epidemics research ...

Middleware

Spectra announces new data mover for BlackPearl solution and certifies more BlackPearl clients ...

Hardware

Cray supercomputers to feature new Intel Xeon Scalable processors ...

Supermicro introduces over 100 resource-saving server and storage systems with new 2nd generation Intel Xeon Scalable processors ...

Spectra Logic announces new tape features and functionality, setting the standard for tape innovation ...

Fujitsu begins production of Post-K ...

Intel Optane technology and Intel QLC NAND technology come together on a single drive ...

Largest, fastest array of microscopic 'traffic cops' for optical communications ...

Applications

Melissa Cragin joins SDSC's Research Data Services Group ...

NVIDIA and American College of Radiology AI-LAB team to accelerate adoption of AI in diagnostic radiology across thousands of hospitals ...

TACC's supercomputers play role in Event Horizon Telescope's first-ever black hole image ...

ATOM Consortium combines forces with NVIDIA to accelerate AI in drug discovery ...

The Cloud

SDSC's Phylogenetics Science Gateway awarded NSF/Internet2 grant ...

HPE and Nutanix sign global agreement to deliver hybrid Cloud as a Service ...

HPE and Google Cloud partner to simplify hybrid Cloud ...

Atos announces Open Hybrid Cloud solution enabling enterprises to move to Google Cloud ...

Atos and CloudBees partner to provide modern application development on Google Cloud ...

Intel and Google Cloud announce strategic partnership to accelerate hybrid Cloud ...

Scientific computing in the Cloud gets down to Earth ...