Back to Table of contents

Primeur weekly 2018-04-09

Quantum computing

Frogs and mushrooms bubble up in quantum fluids ...

Focus on Europe

TrueBrainConnect: Predicting brain disorders - New ERC-funded project at Charité to combine EEG data and machine learning ...

Middleware

TACC promotes longtime visualization expert to director ...

The OpenMP ARB appoints Barbara Chapman of Stony Brook University and Brookhaven National Lab to its Board of Directors ...

GigaSpaces boosts Big Data and analytics performance with InsightEdge Platform 12.3 ...

Hardware

Singapore's NSCC and Australia's Pawsey Supercomputing Centre sign an MOU to boost HPC scientific collaboration ...

World's first 2 petaflop Deep Learning system, NVIDIA DGX-2, features Mellanox InfiniBand and Ethernet solutions ...

Burton Smith, Cray co-founder a dies at 77 ...

REFLEX CES to launch low profile PCIe board XpressGXA10-LP 1150 and 1151 versions ...

Supermicro first-to-market with IoT embedded solutions optimized for new 8th Gen Intel Core processors ...

Preferred Networks to launch MN-1b private sector supercomputer adopting NVIDIA Tesla V100 32GB GPUs ...

GigaSpaces InsightEdge Platform with Intel technology accelerates AI innovations ...

DDN and Dalet announce certified solutions; Reimagining centralized storage for ultra HD broadcast workflows at scale ...

Applications

University of Alabama in Huntsville researchers' supercomputer simulations shed light on the heliospheric interface ...

Academic researchers look to Argonne's Mira supercomputer to better understand boiling phenomena, bubble formation and two-phase bubbly flow inside nuclear reactors ...

Anticipating the dangers of space ...

NVIDIA Project Clara supercomputing platform redefines medical imaging ...

University of Illinois team brings subatomic resolution to computational microscope ...

BSC launches the Bioinfo4Women - Outstanding Young Female Bioinformaticians Programme ...

Statewide Users Group spring conference showcases variety of research and OSC resources ...

Insilico Taiwan calls Taiwanese AI talents with MolHack starting from April 23 ...

Dark matter might not be interactive after all ...

Forecasting the 'whether' with computer modelling ...

William Tang wins 2018 NVIDIA Global Impact Award ...

The Cloud

Gluster Community releases Gluster 4.0 with enhanced container integration ...

Frogs and mushrooms bubble up in quantum fluids

Sort of looks like a frog, right? Researchers at the Ohio State University and their colleagues are using a supercomputer to simulate what happens when two exotic superfluids mix. The simulations have produced some unusual shapes, including mushrooms and this frog-like shape. Image by Kui-Tian Xi, courtesy of the Ohio State University. (K.-T. Xi et al., Phys. Rev. A (2018))4 Apr 2018 Columbus - Quantum fluids may mix in very weird ways, according to new computer simulations of exotic states of matter known as Bose-Einstein condensates (BECs). Far in the future, BECs may enable new kinds of ultra-fast computers. But for now, researchers are just trying to understand the basic physics of how they work.

That's what an Ohio State University visiting scholar in the Department of Physics, Kui-Tian Xi, and his colleagues were doing when they used a supercomputer to simulate what would happen if someone mixed two magnetically polarized BECs.

Snapshots from the simulations, published in the journal Physical Review A , resemble ink blot tests that can be interpreted in any number of ways. As one fluid percolated up through the other, Kui-Tian Xi first saw the blobs form a turtle - that is, a pattern with six finger-like shapes that looked like a head, tail and four legs, similar to a turtle, then a frog - back legs akimbo, and finally an explosion of mushroom shapes.

It might not have been exactly what he expected, but Kui-Tian Xi said he wasn't all that surprised, either.

"To be honest, I did expect that I may see some interesting dynamical properties. But when I first saw the turtle, I thought I might have calculated the parameters of the simulation wrong", he stated. "Then I realized there might be some kind of instability at the interface of the fluids, just like those of classical fluids."

Bose Einstein Condensates are gases made of atoms that are so cold, all of their motion nearly ceases. As the Indian physicist Satyendra Nath Bose and Albert Einstein predicted in the 1920s - and experiments eventually proved in the 1990s - BECs display strange properties because all the atoms occupy the same quantum state.

As such, BECs are superfluids. They are supposed to be frictionless, so they should flow together with zero viscosity. Yet, when Kui-Tian Xi adjusted parameters of the simulation, such as the strength of the magnetic interactions, the two fluids mixed as if one was more viscous than the other - the way viscous hot wax bobs through less viscous water inside a lava lamp.

Kui-Tian Xi and his colleagues, including Hiroki Saito, study leader and professor of engineering science at the University of Electro-Communications in Japan, believe that the simulations offer clues to phenomena that physicists have seen in actual experiments. Under certain circumstances, BECs do seem to behave like normal matter.

In particular, Kui-Tian Xi pointed to recent numerical simulations at Newcastle University where another superfluid, liquid helium, formed waves of turbulence as it flowed over the rough surface of a wire.

The cause of the strange simulated BEC behaviour remains to be seen, but Kui-Tian Xi said that current technology would allow experimental physicists to conduct the experiment for real. As a theorist, though, he's going to focus on the possible implications of an increasing connection between the behaviour of quantum and classical fluids.

Kui-Tian Xi and Hiroki Saito co-authored the study with Tim Byrnes of New York University Shanghai. Their work was mainly funded by the Japan Society for the Promotion of Science, and they performed their simulations on the Prince computer cluster at New York University.

Mushroom cloud: Researchers at the Ohio State University and their colleagues are using a supercomputer to simulate what happens when two exotic super fluids mix. The simulations have produced some unusual shapes, including "frogs" and these mushroom-like shapes. Video by Kui-Tian Xi, courtesy of the Ohio State University. (K.-T. Xi et al., Phys. Rev. A (2018))
Source: Ohio State University

Back to Table of contents

Primeur weekly 2018-04-09

Quantum computing

Frogs and mushrooms bubble up in quantum fluids ...

Focus on Europe

TrueBrainConnect: Predicting brain disorders - New ERC-funded project at Charité to combine EEG data and machine learning ...

Middleware

TACC promotes longtime visualization expert to director ...

The OpenMP ARB appoints Barbara Chapman of Stony Brook University and Brookhaven National Lab to its Board of Directors ...

GigaSpaces boosts Big Data and analytics performance with InsightEdge Platform 12.3 ...

Hardware

Singapore's NSCC and Australia's Pawsey Supercomputing Centre sign an MOU to boost HPC scientific collaboration ...

World's first 2 petaflop Deep Learning system, NVIDIA DGX-2, features Mellanox InfiniBand and Ethernet solutions ...

Burton Smith, Cray co-founder a dies at 77 ...

REFLEX CES to launch low profile PCIe board XpressGXA10-LP 1150 and 1151 versions ...

Supermicro first-to-market with IoT embedded solutions optimized for new 8th Gen Intel Core processors ...

Preferred Networks to launch MN-1b private sector supercomputer adopting NVIDIA Tesla V100 32GB GPUs ...

GigaSpaces InsightEdge Platform with Intel technology accelerates AI innovations ...

DDN and Dalet announce certified solutions; Reimagining centralized storage for ultra HD broadcast workflows at scale ...

Applications

University of Alabama in Huntsville researchers' supercomputer simulations shed light on the heliospheric interface ...

Academic researchers look to Argonne's Mira supercomputer to better understand boiling phenomena, bubble formation and two-phase bubbly flow inside nuclear reactors ...

Anticipating the dangers of space ...

NVIDIA Project Clara supercomputing platform redefines medical imaging ...

University of Illinois team brings subatomic resolution to computational microscope ...

BSC launches the Bioinfo4Women - Outstanding Young Female Bioinformaticians Programme ...

Statewide Users Group spring conference showcases variety of research and OSC resources ...

Insilico Taiwan calls Taiwanese AI talents with MolHack starting from April 23 ...

Dark matter might not be interactive after all ...

Forecasting the 'whether' with computer modelling ...

William Tang wins 2018 NVIDIA Global Impact Award ...

The Cloud

Gluster Community releases Gluster 4.0 with enhanced container integration ...