Back to Table of contents

Primeur weekly 2018-04-03

Quantum computing

Putting quantum scientists in the driver's seat ...

Focus on Europe

Tuesday and Wednesday keynotes announced for ISC 2018 ...

PRACE SHAPE 7th Call for Applications opens from 3 April to 1 June 2018 ...

Cray commissioned to deliver FPGA-accelerated supercomputer to Paderborn University ...

Developing the technology for future smart cities and autonomous cars ...

Philips Research-led big data consortium receives EU funding to improve healthcare outcomes ...

Middleware

Bright partners with Bechtle to offer infrastructure management solutions to French customer base ...

The Linux Foundation and open source community members launch LF Deep Learning to drive open source growth in AI ...

Hardware

NVIDIA boosts world's leading deep learning computing platform, bringing 10x performance gain in six months ...

NVIDIA expands its deep learning inference capabilities for hyperscale data centres ...

DDN Storage announces groundbreaking 33GB/s performance to NVIDIA DGX servers to accelerate machine learning and AI initiatives ...

DDN and SQream partner to deliver the world's fastest Big Data analytics and enterprise business intelligence acceleration at massive scale ...

DDN Storage helps Standard Cognition revolutionize the consumer shopping experience with fully autonomous check-out ...

Supermicro's new scale-up artificial intelligence and machine learning systems with 8 NVIDIA Tesla V100 with NVLink GPUs deliver superior performance and system density ...

NVIDIA reinvents the workstation with real-time ray tracing ...

Penguin Computing receives Americas 2017 NVIDIA Partner Network High Performance Computing Partner of the Year Award ...

Molecular basis of neural memory - reviewing 'neuro-mimetic' technologies ...

Asperitas and Boston announce Immersed Computing partnership ...

NVIDIA and Arm partner to bring deep learning to billions of IoT devices ...

Applications

ANSYS to acquire optical simulation leader OPTIS ...

NCSA's Donna Cox wins 2018 Innovation Transfer Award ...

The future of photonics using quantum dots ...

Chemical synthesis with artificial intelligence: Researchers develop new computer method ...

Hong Kong Polytechnic University and Australian partners jointly launch impactful research on blockchain technologies ...

New Cray artificial intelligence offerings designed to accelerate customers' AI from pilot to production ...

Overcoming a battery's fatal flaw ...

The Cloud

DDN named Data Centre Platform partner of the year at Intel Technology Partner Awards, recognizing its market leadership at scale ...

Oracle redefines the Cloud database category with world's first autonomous database ...

The Linux Foundation announces expanded industry commitment to Akraino Edge Stack ...

OpenContrail is now "Tungsten Fabric" and completes move to The Linux Foundation ...

The future of photonics using quantum dots


One type of laser that's particularly suited for quantum dots is a mode-locked laser, which passively generates ultrashort pulses less than one picosecond in duration. Credit: Peter Allen.
27 Mar 2018 Washington, D.C. - Fiber-optic cables crisscross the globe and package everything from financial data to cat videos into light. But when the signal arrives at your local data centre, it runs into a silicon bottleneck. Instead of light, computers run on electrons moving through silicon-based chips - which, despite huge advances, are still less efficient than photonics. To break through, scientists are trying to integrate photonics into silicon devices, and have been developing lasers that work seamlessly on silicon. InAPL Photonics, researchers write that the future of silicon-based lasers may be in tiny, atomlike structures called quantum dots.

Thousands of miles of fiber-optic cables crisscross the globe and package everything from financial data to cat videos into light. But when the signal arrives at your local data centre, it runs into a silicon bottleneck. Instead of light, computers run on electrons moving through silicon-based chips - which, despite huge advances, are still less efficient than photonics.

To break through this bottleneck, researchers are trying to integrate photonics into silicon devices. They've been developing lasers - a crucial component of photonic circuits - that work seamlessly on silicon. In a paper appearing inAPL Photonics, from AIP Publishing, researchers from the University of California, Santa Barbara write that the future of silicon-based lasers may be in tiny, atomlike structures called quantum dots.

Such lasers could save a lot of energy. Replacing the electronic components that connect devices with photonic components could cut energy use by 20 to 75 percent, Justin Norman, a graduate student at UC Santa Barbara, stated: "It's a substantial cut to global energy consumption just by having a way to integrate lasers and photonic circuits with silicon."

Silicon, however, does not have the right properties for lasers. Researchers have instead turned to a class of materials from Groups III and V of the periodic table because these materials can be integrated with silicon.

Initially, the researchers struggled to find a functional integration method, but ultimately ended up using quantum dots because they can be grown directly on silicon, Norman said. Quantum dots are semiconductor particles only a few nanometers wide - small enough that they behave like individual atoms. When driven with electrical current, electrons and positively charged holes become confined in the dots and recombine to emit light - a property that can be exploited to make lasers.

The researchers made their III-V quantum-dot lasers using a technique called molecular beam epitaxy. They deposit the III-V material onto the silicon substrate, and its atoms self-assemble into a crystalline structure. But the crystal structure of silicon differs from III-V materials, leading to defects that allow electrons and holes to escape, degrading performance. Fortunately, because quantum dots are packed together at high densities - more than 50 billion dots per square centimeter - they capture electrons and holes before the particles are lost.

These lasers have many other advantages, Justin Norman said. For example, quantum dots are more stable in photonic circuits because they have localized atomlike energy states. They can also run on less power because they don't need as much electric current. Moreover, they can operate at higher temperatures and be scaled down to smaller sizes.

In just the last year, researchers have made considerable progress thanks to advances in material growth, Justin Norman said. Now, the lasers operate at 35 degrees Celsius without much degradation and the researchers report that the lifetime could be up to 10 million hours.

They are now testing lasers that can operate at 60 to 80 degrees Celsius, the more typical temperature range of a data centre or supercomputer. They're also working on designing epitaxial waveguides and other photonic components, Justin Norman said. "Suddenly", he stated, "we've made so much progress that things are looking a little more near term."

The article, " Perspective: The future of quantum dot photonic integrated circuits ", is authored by Justin C. Norman, Daehwan Jung, Yating Wan and John E. Bowers. The article has appeared in the journalAPL Photonics, March 27, 2018 - DOI: 10.1063/1.5021345.

Source: American Institute of Physics - AIP

Back to Table of contents

Primeur weekly 2018-04-03

Quantum computing

Putting quantum scientists in the driver's seat ...

Focus on Europe

Tuesday and Wednesday keynotes announced for ISC 2018 ...

PRACE SHAPE 7th Call for Applications opens from 3 April to 1 June 2018 ...

Cray commissioned to deliver FPGA-accelerated supercomputer to Paderborn University ...

Developing the technology for future smart cities and autonomous cars ...

Philips Research-led big data consortium receives EU funding to improve healthcare outcomes ...

Middleware

Bright partners with Bechtle to offer infrastructure management solutions to French customer base ...

The Linux Foundation and open source community members launch LF Deep Learning to drive open source growth in AI ...

Hardware

NVIDIA boosts world's leading deep learning computing platform, bringing 10x performance gain in six months ...

NVIDIA expands its deep learning inference capabilities for hyperscale data centres ...

DDN Storage announces groundbreaking 33GB/s performance to NVIDIA DGX servers to accelerate machine learning and AI initiatives ...

DDN and SQream partner to deliver the world's fastest Big Data analytics and enterprise business intelligence acceleration at massive scale ...

DDN Storage helps Standard Cognition revolutionize the consumer shopping experience with fully autonomous check-out ...

Supermicro's new scale-up artificial intelligence and machine learning systems with 8 NVIDIA Tesla V100 with NVLink GPUs deliver superior performance and system density ...

NVIDIA reinvents the workstation with real-time ray tracing ...

Penguin Computing receives Americas 2017 NVIDIA Partner Network High Performance Computing Partner of the Year Award ...

Molecular basis of neural memory - reviewing 'neuro-mimetic' technologies ...

Asperitas and Boston announce Immersed Computing partnership ...

NVIDIA and Arm partner to bring deep learning to billions of IoT devices ...

Applications

ANSYS to acquire optical simulation leader OPTIS ...

NCSA's Donna Cox wins 2018 Innovation Transfer Award ...

The future of photonics using quantum dots ...

Chemical synthesis with artificial intelligence: Researchers develop new computer method ...

Hong Kong Polytechnic University and Australian partners jointly launch impactful research on blockchain technologies ...

New Cray artificial intelligence offerings designed to accelerate customers' AI from pilot to production ...

Overcoming a battery's fatal flaw ...

The Cloud

DDN named Data Centre Platform partner of the year at Intel Technology Partner Awards, recognizing its market leadership at scale ...

Oracle redefines the Cloud database category with world's first autonomous database ...

The Linux Foundation announces expanded industry commitment to Akraino Edge Stack ...

OpenContrail is now "Tungsten Fabric" and completes move to The Linux Foundation ...