Back to Table of contents

Primeur weekly 2018-03-19

Exascale supercomputing

BSC and Fujitsu to build up an ecosystem for a future exascale supercomputer ...

Quantum computing

New quantum spin liquid predicted by Nobel Laureate prepared for the first time ...

Focus on Europe

New project to plug the software-stack support gap for energy-efficient computing ...

North German scientists receive new supercomputer in the HLRN network ...

Hardware

Cray tapped to deliver largest supercomputer dedicated to fusion science in Japan by National Institutes for Quantum and Radiological Science and Technology ...

Keeping GPUs young ...

Asetek announces ongoing collaboration with Intel on liquid cooling for servers and data centres ...

UC San Diego Center for Microbiome Innovation announces Panasas as Corporate Member ...

Cavium expands industry partnerships to drive OCP NIC 3.0 ...

Applications

How much snow accumulates in North America each year? More than scientists thought. ...

Green light for Galaxy Europe ...

Supercomputer simulation opens prospects for obtaining ultra-dense electron-positron plasmas ...

The complex journey of red bloods cells through microvascular networks ...

The view from inside supersonic combustion ...

A game changer: Metagenomic clustering powered by supercomputers ...

ORNL researchers design novel method for energy-efficient deep neural networks ...

University of Texas researchers develop new visualization tools to explore fusion physics ...

Fishing with simulations for two-dimensional materials ...

The Cloud

IBM helps accelerate AI with fast new data platform and elite team ...

European Commission to adopt Implementation Roadmap for the European Open Science Cloud ...

Univa announces a global partnership and reseller agreement with UberCloud ...

Univa open sources Project Tortuga to accelerate the migration of enterprise HPC workloads to the Cloud ...

USFlash

Xilinx unveils revolutionary adaptable computing product category ...

Fishing with simulations for two-dimensional materials


Computational discovery of novel 2D materials. Image: Giovanni Pizzi, EPFL.
15 Mar 2018 Lugano - Ever since the successful production of graphene, two-dimensional materials have been intensively researched. Scientists Andre Geim and Konstantin Novoselov were honoured with the Nobel Prize in 2010 for extracting with tape an atom-thick layer of the new material Graphene from carbon - from the tip of a pencil, and for their research done on it. Two-dimensional materials are ascribed completely different physical properties to the three-dimensional compounds from which they derive. They are thus promising candidates for the next generation of electronic and opto-electronic applications, as Nicolas Mounet, Nicola Marzari and their team from the National Center of Competence in Research MARVEL at EPFL in Lausanne write in their article, recently published in the journalNature Nanotechnology. Their latest research results even made the journal's front page - the team has developed a method that used the CSCS supercomputer "Piz Daint" to identify 258 promising candidates for two-dimensional compounds in one go.

The researchers began their investigation with 108,423 materials known from other experiments. They first used their self-developed algorithm to filter out materials with suitable geometric properties: crystals with a layered structure. This helped them to narrow down the number to 5,619 compounds, which were then screened using high-throughput electronic structure calculations, thus fishing out materials whose layers only had weak bonding interaction between them.

Using this step-by-step approach, the researchers succeeded in identifying 1825 crystal structures that may allow two-dimensional materials to be extracted. They also further tested in their simulations the crystals' mechanical stability, vibrational properties, electronic structure and potential magnetic strength for a subset of 258 promising candidates. The results showed that most of them are semiconductors.

Until now, two-dimensional materials have remained rare; only a few dozen could be produced or exfoliated from three-dimensional materials. For the team, the success of their new method in the search for two-dimensional materials is a perfect example of how computational methods can speed up the discovery of new materials.

Others are interested in their approach too: Olle Eriksson from Örebro University in Sweden, who was not involved in the study and contributed an article for News & Views inNature Nanotechnology, hopes that some of the materials will now be able to be experimentally produced. He is convinced that in future, this method will make it possible to find materials with particular desired properties using a suitable filter algorithm.

The paper titled " Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds " was authored by Mounet N. et al. It was published inNature Nanotechnology(2018), 13, 246-252.
Source: Swiss National Supercomputing Centre - CSCS

Back to Table of contents

Primeur weekly 2018-03-19

Exascale supercomputing

BSC and Fujitsu to build up an ecosystem for a future exascale supercomputer ...

Quantum computing

New quantum spin liquid predicted by Nobel Laureate prepared for the first time ...

Focus on Europe

New project to plug the software-stack support gap for energy-efficient computing ...

North German scientists receive new supercomputer in the HLRN network ...

Hardware

Cray tapped to deliver largest supercomputer dedicated to fusion science in Japan by National Institutes for Quantum and Radiological Science and Technology ...

Keeping GPUs young ...

Asetek announces ongoing collaboration with Intel on liquid cooling for servers and data centres ...

UC San Diego Center for Microbiome Innovation announces Panasas as Corporate Member ...

Cavium expands industry partnerships to drive OCP NIC 3.0 ...

Applications

How much snow accumulates in North America each year? More than scientists thought. ...

Green light for Galaxy Europe ...

Supercomputer simulation opens prospects for obtaining ultra-dense electron-positron plasmas ...

The complex journey of red bloods cells through microvascular networks ...

The view from inside supersonic combustion ...

A game changer: Metagenomic clustering powered by supercomputers ...

ORNL researchers design novel method for energy-efficient deep neural networks ...

University of Texas researchers develop new visualization tools to explore fusion physics ...

Fishing with simulations for two-dimensional materials ...

The Cloud

IBM helps accelerate AI with fast new data platform and elite team ...

European Commission to adopt Implementation Roadmap for the European Open Science Cloud ...

Univa announces a global partnership and reseller agreement with UberCloud ...

Univa open sources Project Tortuga to accelerate the migration of enterprise HPC workloads to the Cloud ...

USFlash

Xilinx unveils revolutionary adaptable computing product category ...