Back to Table of contents

Primeur weekly 2018-03-05

Quantum computing

Want more efficient simulators? Store time in a quantum superposition ...

Experimentally demonstrated a toffoli gate in a semiconductor three-qubit system ...

Individual quantum dots imaged in 3D for first time ...

Artificial intelligence techniques reconstruct mysteries of quantum systems ...

Majorana runners go long range: New topological phases of matter unveiled ...

Focus on Europe

University of Groningen to organize Second Information Universe Conference ...

IEEE eScience 2018 calls for contributions ...

Harvey Meyer is awarded an ERC Consolidator Grant for fundamental calculations on strong interaction effects ...

BSC presents SuperGeek, a mascot to bring supercomputers closer to the youngest ...

Call for Participation to European Forum about "Shaping Europe's Digital Future - HPC for Extreme Scale Scientific and Industrial Applications" ...

Data management and computing infrastructure procurement broadly serves Finnish research ...

Hardware

High demand from commercial customers to boost growth in global supercomputer market ...

OCF deploys UK academia's first IBM POWER9 systems ...

Niagara is Canada's most powerful research supercomputer fuelling Canadian innovation and discovery ...

CENIC recognizes UCSC's Hyades supercomputer cluster connection ...

CoolIT Systems reports 60% revenue growth in 2017 ...

SPEC offers HPG benchmarks free of charge to qualified non-profit organisations worldwide ...

Applications

Supercomputer model reveals how sticky tape makes graphene ...

Concertio launches Optimizer Studio to help performance engineers and IT professionals achieve peak system performance ...

Sandia researcher Jacqueline Chen elected to National Academy of Engineering ...

Oak Ridge National Laboratory uses supercomputers to simulate radiation transport and to understand the dynamic interactions among ions, solids and liquids ...

Mining hardware helps scientists gain insight into silicon nanoparticles ...

Can strongly lensed type 1a supernovae resolve cosmology's biggest controversy? ...

Give your research a boost at the SURF Research Bootcamp ...

TOP500

Supercomputing under a new lens: A Sandia-developed benchmark re-ranks top computers ...

The Cloud

Alibaba Cloud launches Cloud and AI solutions in Europe including bare metal HPC services ...

KIT helps build the European Open Science Cloud ...

Individual quantum dots imaged in 3D for first time


This is a conventional STM image of a quantum dot, top, compared with an image produced using the new excited-state SMA-STM technique. Credit: Martin Gruebele.
27 Feb 2018 Urbana-Champaign - Researchers have developed an imaging technique that uses a tiny, super sharp needle to nudge a single nanoparticle into different orientations and capture 2D images to help reconstruct a 3D picture. The method demonstrates imaging of individual nanoparticles at different orientations while in a laser-induced excited state.

The findings, published in theJournal of Chemical Physics, brought together researchers from the University of Illinois and the University of Washington, Seattle in a collaborative project through the Beckman Institute for Advanced Science and Technology at the University of Illinois.

Nanostructures like microchip semiconductors, carbon nanotubes and large protein molecules contain defects that form during synthesis that cause them to differ in composition from one another. However, these defects are not always a bad thing, said Martin Gruebele, the lead author and an Illinois chemistry professor and chair.

"The term 'defect' is a bit of a misnomer", Martin Gruebele stated. "For example, semiconductors are manufactured with intentional defects that form the 'holes' that electrons jump into to produce electrical conductivity. Having the ability to image those defects could let us better characterize them and control their production."

As advances in technology allow for smaller and smaller nanoparticles, it is critical for engineers to know the precise number and location of these defects to assure quality and functionality.

The study focused on a class of nanoparticles called quantum dots. These dots are tiny, near-spherical semiconductors used in technology like solar panels, live cell imaging and molecular electronics - the basis for quantum computing.

The team observed the quantum dots using a single-molecule absorption scanning tunneling microscope fitted with a needle sharpened to a thickness of only one atom at its tip. The needle nudges the individual particles around on a surface and scans them to get a view of the quantum dot from different orientations to produce a 3D image.

The researchers said there are two distinct advantages of the new SMA-STM method when compared with the current technology - the Nobel Prize-winning technique called cryogenic electron tomography.

"Instead of an image produced using an average of thousands of different particles, as is done with CryoET, SMA-STM can produce an image from a single particle in about 20 different orientations", Martin Gruebele stated. "And because we are not required to chill the particles to near-absolute zero temperatures, we can capture the particles at room temperature, not frozen and motionless."

The researchers looked at semiconductor quantum dots for this study, but SMA-STM can also be used to explore other nanostructures such as carbon nanotubes, metal nanoparticles or synthetic macromolecules. The group believes the technique can be refined for use with soft materials like protein molecules, Martin Gruebele said.

The researchers are working to advance SMA-STM into a single-particle tomography technique, meaning that they will need to prove that method is non-invasive.

"For SMA-STM to become a true single-particle tomography technique, we will need to prove that our nudges do not damage or score the nanoparticle in any way while rolled around", Martin Gruebele stated. "Knocking off just one atom can fundamentally alter the defect structure of the nanoparticle."

The paper titled " Orientation-dependent imaging of electronically excited quantum dots " is available online.

A video related to this research is available.

Source: University of Illinois at Urbana-Champaign

Back to Table of contents

Primeur weekly 2018-03-05

Quantum computing

Want more efficient simulators? Store time in a quantum superposition ...

Experimentally demonstrated a toffoli gate in a semiconductor three-qubit system ...

Individual quantum dots imaged in 3D for first time ...

Artificial intelligence techniques reconstruct mysteries of quantum systems ...

Majorana runners go long range: New topological phases of matter unveiled ...

Focus on Europe

University of Groningen to organize Second Information Universe Conference ...

IEEE eScience 2018 calls for contributions ...

Harvey Meyer is awarded an ERC Consolidator Grant for fundamental calculations on strong interaction effects ...

BSC presents SuperGeek, a mascot to bring supercomputers closer to the youngest ...

Call for Participation to European Forum about "Shaping Europe's Digital Future - HPC for Extreme Scale Scientific and Industrial Applications" ...

Data management and computing infrastructure procurement broadly serves Finnish research ...

Hardware

High demand from commercial customers to boost growth in global supercomputer market ...

OCF deploys UK academia's first IBM POWER9 systems ...

Niagara is Canada's most powerful research supercomputer fuelling Canadian innovation and discovery ...

CENIC recognizes UCSC's Hyades supercomputer cluster connection ...

CoolIT Systems reports 60% revenue growth in 2017 ...

SPEC offers HPG benchmarks free of charge to qualified non-profit organisations worldwide ...

Applications

Supercomputer model reveals how sticky tape makes graphene ...

Concertio launches Optimizer Studio to help performance engineers and IT professionals achieve peak system performance ...

Sandia researcher Jacqueline Chen elected to National Academy of Engineering ...

Oak Ridge National Laboratory uses supercomputers to simulate radiation transport and to understand the dynamic interactions among ions, solids and liquids ...

Mining hardware helps scientists gain insight into silicon nanoparticles ...

Can strongly lensed type 1a supernovae resolve cosmology's biggest controversy? ...

Give your research a boost at the SURF Research Bootcamp ...

TOP500

Supercomputing under a new lens: A Sandia-developed benchmark re-ranks top computers ...

The Cloud

Alibaba Cloud launches Cloud and AI solutions in Europe including bare metal HPC services ...

KIT helps build the European Open Science Cloud ...