Back to Table of contents

Primeur weekly 2018-02-19

Exascale supercomputing

Ready for Exascale: researchers find algorithm for large-scale brain simulations on next-generation supercomputers ...

Quantum computing

Researchers demonstrate promising method for improving quantum information processing ...

Fingerprints of quantum entanglement ...

Focus on Europe

Karel Luyben appointed Dutch National Coordinator for Open Science ...

Middleware

An OLCF-developed visualization tool offers customization and faster rendering ...

Hardware

Dell EMC next generation converged infrastructure makes data centre modernization even simpler ...

Cray reports 2017 full year and fourth quarter financial results ...

Michael Levine and Ralph Roskies Day proclaimed in Pittsburgh and Allegheny County ...

MACH-2 put into operation at 77 trillion operations/second ...

Applications

CENIC recognizes technology projects to combat California wildfires ...

3D-e-Chem team develops building blocks and recipes for computer-aided drug discovery ...

Researchers find blood pressure drug holds promise for preventing onset of Type 1 diabetes ...

NCSA allocates over $2.4 million in new Blue Waters supercomputer awards to Illinois researchers ...

NCSA researchers create one of the most reliable tools for long-term crop prediction in the U.S. Corn Belt ...

Embracing complexity in biological systems ...

Particle interactions calculated on Titan support the search for new physics discoveries ...

GM revs up diesel combustion modeling on Titan supercomputer ...

NEC and Tohoku University succeed in AI-based new material development ...

Physics data processing at NERSC dramatically cuts reconstruction time ...

Advanced computing and water management at the AAAS Meeting 2018 ...

Neural networks everywhere ...

Supermassive black hole model predicts characteristic light signals at cusp of collision ...

New turbulent transport modelling shows multiscale fluctuations in heated plasma ...

TACC and DOD engage in four-year transformational design project ...

The Cloud

Atos signs key contract with the European Space Agency to enable new services with satellite data ...

Oracle buys Zenedge ...

NEC contributes to ecosystem for enhancing virtualized network orchestration ...

NCSA researchers create one of the most reliable tools for long-term crop prediction in the U.S. Corn Belt


Conceptual diagram for phenological stages in the original CLM, APSIM and CLM-APSIM models. Unique features in CLM-APSIM crop model are also highlighted. Note that the stage duration in this diagram is not proportional to real stage length, and only presented for illustrative purpose.
14 Feb 2018 Urbana-Champaign - With the help of the Blue Waters supercomputer, at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, Blue Waters Professor Kaiyu Guan and NCSA postdoc fellow, Bin Peng implemented and evaluated a new maize growth model. The CLM-APSIM model combines superior features in both Community Land Model (CLM) and Agricultural Production Systems sIMulator (APSIM), creating one of the most reliable tools for long-term crop prediction in the U.S. Corn Belt.

Bin Peng and Kaiyu Guan recently published their paper, " Improving maize growth processes in the community land model: Implementation and evaluation " in theAgricultural and Forestry Meteorologyjournal. This work is an outstanding example of the convergence of simulation and data science that is a driving factor in the National Strategic Computing Initiative announced by the White House in 2015.

"One class of crop models is agronomy-based and the other is embedded in climate models or earth system models. They are developed for different purposes and applied at different scales", stated Kaiyu Guan. "Because each has its own strengths and weaknesses, our idea is to combine the strengths of both types of models to make a new crop model with improved prediction performance." Additionally, what makes the new CLM-APSIM model unique is the more detailed phenology stages, an explicit implementation of the impacts of various abiotic environmental stresses - including nitrogen, water, temperature and heat stresses - on maize phenology and carbon allocation, as well as an explicit simulation of grain number.

With support from the NCSA Blue Waters project - funded by the National Science Foundation and Illinois, NASA and the USDA National Institute of Food and Agriculture (NIFA) Foundational Programme, Bin Peng and Kaiyu Guan created the prototype for CLM-APSIM. "We built this new tool to bridge these two types of crop models combining their strengths and eliminating the weaknesses."

The team is currently conducting a high resolution regional simulation over the contiguous United States to simulate corn yield at each planting corner. "There are hundreds of thousands of grids, and we run this model over each grid for 30 years in historical simulation and even more for future projection simulation", stated Bin Peng. "Currently it takes us several minutes to calculate one model-year simulation over a single grid. The only way to do this in a timely manner is to use parallel computing with thousands of cores in Blue Waters."

Bin Peng and Kaiyu Guan examined the results of this tool at seven different locations across the U.S. Corn Belt, revealing that the CLM-APSIM model more accurately predicted and simulated phenology of leaf area index and canopy height, surface fluxes including gross primary production, net ecosystem exchange, latent heat, sensible heat and especially in simulating the biomass partition and maize yield in comparison to the earlier CLM4.5 model. The CLM-APSIM model also corrected a serious deficiency in the original CLM model that underestimated aboveground biomass and overestimated the Harvest Index, which led to a reasonable yield estimation with wrong mechanisms.

Additionally, results from a 13-year simulation (2001-2013) at three sites located in Mead, Nevada, (US-Ne1, Ne2 and Ne3) show that the CLM-APSIM model can more accurately reproduce maize yield responses to growing season climate - temperature and precipitation - than the original CLM4.5 when benchmarked with the site-based observations and USDA county-level survey statistics.

"We can simulate the past, because we already have the weather datasets, but looking into the next 50 years, how can we understand the effect of climate change? Furthermore, how can we understand what farmers can do to improve and mitigate the climate change impact and improve the yield?" Kaiyu Guan stated.

Their hope is to integrate satellite data into the model, similar to that of weather forecasting. "The ultimate goal is to not only have a model, but to forecast in real-time, the crop yields and to project the crop yields decades into the future", stated Kaiyu Guan. "With this technology, we want to not only simulate all the corn in the county of Champaign, Illinois, but everywhere in the U.S. and at a global scale."

From here, Bin Peng and Kaiyu Guan plan to expand this tool to include other staple crops, such as wheat, rice and soybeans. They are projected to complete a soybean simulation model for the entire United States within the next year.
Source: National Center for Supercomputing Applications - NCSA

Back to Table of contents

Primeur weekly 2018-02-19

Exascale supercomputing

Ready for Exascale: researchers find algorithm for large-scale brain simulations on next-generation supercomputers ...

Quantum computing

Researchers demonstrate promising method for improving quantum information processing ...

Fingerprints of quantum entanglement ...

Focus on Europe

Karel Luyben appointed Dutch National Coordinator for Open Science ...

Middleware

An OLCF-developed visualization tool offers customization and faster rendering ...

Hardware

Dell EMC next generation converged infrastructure makes data centre modernization even simpler ...

Cray reports 2017 full year and fourth quarter financial results ...

Michael Levine and Ralph Roskies Day proclaimed in Pittsburgh and Allegheny County ...

MACH-2 put into operation at 77 trillion operations/second ...

Applications

CENIC recognizes technology projects to combat California wildfires ...

3D-e-Chem team develops building blocks and recipes for computer-aided drug discovery ...

Researchers find blood pressure drug holds promise for preventing onset of Type 1 diabetes ...

NCSA allocates over $2.4 million in new Blue Waters supercomputer awards to Illinois researchers ...

NCSA researchers create one of the most reliable tools for long-term crop prediction in the U.S. Corn Belt ...

Embracing complexity in biological systems ...

Particle interactions calculated on Titan support the search for new physics discoveries ...

GM revs up diesel combustion modeling on Titan supercomputer ...

NEC and Tohoku University succeed in AI-based new material development ...

Physics data processing at NERSC dramatically cuts reconstruction time ...

Advanced computing and water management at the AAAS Meeting 2018 ...

Neural networks everywhere ...

Supermassive black hole model predicts characteristic light signals at cusp of collision ...

New turbulent transport modelling shows multiscale fluctuations in heated plasma ...

TACC and DOD engage in four-year transformational design project ...

The Cloud

Atos signs key contract with the European Space Agency to enable new services with satellite data ...

Oracle buys Zenedge ...

NEC contributes to ecosystem for enhancing virtualized network orchestration ...