Back to Table of contents

Primeur weekly 2018-02-12

Quantum computing

New controls scale quantum chips ...

Controlling quantum interactions in a single material ...

Light controls two-atom quantum computation ...

Focus on Europe

TANGO project releases the Beta version of #TANGOToolbox to facilitate the effort of coding when targeting various hardware architectures ...

Nominations open for PRACE Ada Lovelace Award for HPC 2018 ...

Optalysys and The Earlham Institute achieve over 90% energy savings in breakthrough project applying optical processing for DNA sequence alignment ...

Middleware

Sylabs emerges from stealth to bring Singularity container technology to enterprise performance computing ...

Dell EMC expands server capabilities for software-defined, edge and high-performance computing ...

Hardware

Virtual reality helps explore the GPS of the mind ...

HiPerGator is the number 3 most powerful computer at a U.S. public university ...

Supermicro expands edge computing and network appliance portfolio with new high density SoC solutions ...

Supermicro introduces Silicon Valley's first 3-Megawatt clean energy automated rack integration facility ...

One Stop Systems introduces highest bandwidth, 5th generation NVMe ion accelerator flash storage array ...

Applications

University of Illinois researcher recognized with ACM Fellowship for contributions to parallel programming ...

After the storm: Simulating and visualizing extreme weather with XSEDE ...

XSEDE's Maverick helps explore next generation solar cells and LEDs ...

Optimized solutions for treating bone fractures will soon be reality ...

UMass Amherst computer science experts in artificial intelligence join IBM's AI Horizons Network ...

AI computer vision breakthrough IDs poachers in less than half a second ...

University of Chicago astrophysicists settle cosmic debate on magnetism of planets and stars ...

Portland State University joins nationwide program to develop brain-inspired computing ...

The Cloud

Ampere launches to accelerate hyperscale Cloud computing innovations ...

Oracle Cloud growth driving aggressive global expansion ...

Leading Cloud providers join with NSF to support data science frontiers ...

Smartly containing the Cloud increases computing efficiency, according to first-of-its-kind study ...

New controls scale quantum chips

This is Rigetti's 19Q superconducting quantum processor. Credit: Rigetti Computing.2 Feb 2018 Berkeley - A fundamental barrier to scaling quantum computing machines is 'qubit interference'. In new research published inScience Advancesmagazine, engineers and physicists from Rigetti Computing describe a breakthrough that can expand the size of practical quantum processors by reducing interference.

Matt Reagor, lead author of the paper, stated: "We've developed a technique that enables us to reduce interference between qubits as we add more and more qubits to a chip, thus retaining the ability to perform logical operations that are independent of the state of a (large) quantum register."

To explain the concept, the Rigetti team employs wine glasses as an analogy to qubits: Clink a wine glass, and you will hear it ring at its resonant frequency - usually around 400 Hz. Likewise, soundwaves at that frequency will cause the same glass to vibrate. Different shapes or amounts of liquid in a glass will produce different clinks, i.e. different resonance frequencies. A clinked wine glass will cause identical, nearby glasses to vibrate. Glasses that are different shapes are "off-resonant glasses", meaning they will not vibrate much at all.

So, what's the relation between glasses and qubits?

Matt Reagor explained that each physical qubit on a superconducting quantum processor stores energy in the form of an oscillating electric current. "Think of each qubit as a wine glass", he stated. "The logical state of a qubit - e.g. '0' or '1' - is encoded by the state of its corresponding electric currents. In our analogy, this is equivalent to whether or not a wine glass is vibrating."

A highly successful class of entangling gates for superconducting qubits operate by tuning two or more qubits into resonance with each other. At this tuning point, the "wine glasses" pick up on one another's "vibrations".

This effect can be strong enough to produce significant, conditional vibration changes that can be leveraged as conditional logic. Imagine pouring or siphoning off wine from one of the glasses to make this tuning happen. With qubits, there are tunable circuit elements that fulfill the same purpose.

"As we scale up quantum processors, there are more and more wine glasses to manage when executing a specific conditional logic gate", stated Matt Reagor. "Imagine lining up a handful of identical glasses with increasing amounts of wine. Now we want to tune one glass into resonance with another, without disturbing any of the other glasses. To do that, you could try to equalize the wine levels of the glasses. But that transfer needs to be instantaneous to not shake the rest of the glasses along the way. Let's say one glass has a resonance at one frequency - call it 400 Hz - while another, nearby glass has a different one - e.g. 380 Hz. Now, we make use of a somewhat subtle musical effect. We are actually going to fill and deplete one of the glasses repeatedly."

He continued: "We repeat that filling operation at the difference frequency between the glasses - here, 20 times per second, or 20 Hz. By doing so, we create a beat-note for this glass that is exactly resonant with the other. Physicists sometimes call this a parametric process. Our beat-note is 'pure' - it does not have frequency content that interferes with the other glasses. That's what we have demonstrated in our recent work, where we navigated a complex eight-qubit processor with parametric two-qubit gates."

Matt Reagor concluded: "While this analogy may sound somewhat fanciful, its mapping onto our specific technology, from a mathematical standpoint, is surprisingly accurate."

The title of this paper is: " Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice ". It has been published inScience Advances.

Source: Rigetti Computing

Back to Table of contents

Primeur weekly 2018-02-12

Quantum computing

New controls scale quantum chips ...

Controlling quantum interactions in a single material ...

Light controls two-atom quantum computation ...

Focus on Europe

TANGO project releases the Beta version of #TANGOToolbox to facilitate the effort of coding when targeting various hardware architectures ...

Nominations open for PRACE Ada Lovelace Award for HPC 2018 ...

Optalysys and The Earlham Institute achieve over 90% energy savings in breakthrough project applying optical processing for DNA sequence alignment ...

Middleware

Sylabs emerges from stealth to bring Singularity container technology to enterprise performance computing ...

Dell EMC expands server capabilities for software-defined, edge and high-performance computing ...

Hardware

Virtual reality helps explore the GPS of the mind ...

HiPerGator is the number 3 most powerful computer at a U.S. public university ...

Supermicro expands edge computing and network appliance portfolio with new high density SoC solutions ...

Supermicro introduces Silicon Valley's first 3-Megawatt clean energy automated rack integration facility ...

One Stop Systems introduces highest bandwidth, 5th generation NVMe ion accelerator flash storage array ...

Applications

University of Illinois researcher recognized with ACM Fellowship for contributions to parallel programming ...

After the storm: Simulating and visualizing extreme weather with XSEDE ...

XSEDE's Maverick helps explore next generation solar cells and LEDs ...

Optimized solutions for treating bone fractures will soon be reality ...

UMass Amherst computer science experts in artificial intelligence join IBM's AI Horizons Network ...

AI computer vision breakthrough IDs poachers in less than half a second ...

University of Chicago astrophysicists settle cosmic debate on magnetism of planets and stars ...

Portland State University joins nationwide program to develop brain-inspired computing ...

The Cloud

Ampere launches to accelerate hyperscale Cloud computing innovations ...

Oracle Cloud growth driving aggressive global expansion ...

Leading Cloud providers join with NSF to support data science frontiers ...

Smartly containing the Cloud increases computing efficiency, according to first-of-its-kind study ...