Back to Table of contents

Primeur weekly 2018-02-12

Quantum computing

New controls scale quantum chips ...

Controlling quantum interactions in a single material ...

Light controls two-atom quantum computation ...

Focus on Europe

TANGO project releases the Beta version of #TANGOToolbox to facilitate the effort of coding when targeting various hardware architectures ...

Nominations open for PRACE Ada Lovelace Award for HPC 2018 ...

Optalysys and The Earlham Institute achieve over 90% energy savings in breakthrough project applying optical processing for DNA sequence alignment ...

Middleware

Sylabs emerges from stealth to bring Singularity container technology to enterprise performance computing ...

Dell EMC expands server capabilities for software-defined, edge and high-performance computing ...

Hardware

Virtual reality helps explore the GPS of the mind ...

HiPerGator is the number 3 most powerful computer at a U.S. public university ...

Supermicro expands edge computing and network appliance portfolio with new high density SoC solutions ...

Supermicro introduces Silicon Valley's first 3-Megawatt clean energy automated rack integration facility ...

One Stop Systems introduces highest bandwidth, 5th generation NVMe ion accelerator flash storage array ...

Applications

University of Illinois researcher recognized with ACM Fellowship for contributions to parallel programming ...

After the storm: Simulating and visualizing extreme weather with XSEDE ...

XSEDE's Maverick helps explore next generation solar cells and LEDs ...

Optimized solutions for treating bone fractures will soon be reality ...

UMass Amherst computer science experts in artificial intelligence join IBM's AI Horizons Network ...

AI computer vision breakthrough IDs poachers in less than half a second ...

University of Chicago astrophysicists settle cosmic debate on magnetism of planets and stars ...

Portland State University joins nationwide program to develop brain-inspired computing ...

The Cloud

Ampere launches to accelerate hyperscale Cloud computing innovations ...

Oracle Cloud growth driving aggressive global expansion ...

Leading Cloud providers join with NSF to support data science frontiers ...

Smartly containing the Cloud increases computing efficiency, according to first-of-its-kind study ...

Optimized solutions for treating bone fractures will soon be reality

Hologram glasses in use: a physician uses Disior software to optimize the care of a patient coming in for jaw bone surgery. Copyright: Disior Ltd. 8 Feb 2018 Espoo - Mathematic modelling has been a standard tool for engineers for decades, but in clinical medicine, it is still a newcomer. The Finnish start-up software company Disior Ltd. develops computational software for treating bone fractures. The purpose is to bring mathematical modelling, known for its benefits in research and industry, available for physicians.

"We wish to provide physicians with software that corresponds to the powerful software used by mechanical engineers for computing mechanics, momentum and structural strength. The benefits and usability of the software must meet the doctors' needs", stated CEO of Disior Ltd., Anna-Maria Henell.

From the very start of its establishment in 2016, Disior has collaborated with the Hospital District of Helsinki and Uusimaa (HUS) in product development. Disior's development team is multidisciplinary, ranging from software developers to surgeons.

Disior is one of the six European companies that were granted resources in the European high-performance computing infrastructure PRACE - the Partnership for Advanced Computing in Europe - in its latest call for applications under the SHAPE programme - SME HPC Adoption Programme for Europe. The SHAPE call for applications is intended for European Small and Medium Enterprises (SMEs) that use high-performance computing in their operations, and can use it to improve their competitiveness. The purpose of the SHAPE programme is to increase the opportunities for innovation in European SMEs and to lower the threshold for utilizing high-performance computing in product development.

Thanks to the resources obtained from PRACE, Disior gets support from CSC for developing their software code. The computing is performed with Elmer, an open-source simulation software developed by CSC for multiphysical simulations, including e.g. finite element analysis.

Currently, Disior's most advanced solution algorithms apply to the reconstruction of jaw bone, but the same principles can also be applied to other parts of the body.

Optimization of the jaw reconstruction involves calculation of the correct size and location of an implant to be installed in the joint, minimization of the loads between bone and the implant screws, and the amount of metal used in the implant. Furthermore, the implant can be optimized to withstand the load caused by the mastication cycle.

"The individual computations are not demanding per se, but since there is a huge number of computations to be optimized, the need for computing cores rises up to several thousands. The optimization must be fast, since the patient is waiting with a fractured jaw", stated Sakari Soini, Director of Technology at Disior.

Thanks to help from CSC, the optimization of the jaw bone reconstruction is now approximately ten times faster than what it initially was.

"Parallelization of code with Elmer is beyond comparison", stated Sakari Soini.

Let's see how this works in practice. One is now in Disior's office in Meilahti, Helsinki. One puts on holographic glasses and plays doctor for a moment. The patient has a fractured jawbone, needing an implant to mend the fracture. 3D X-ray images generated by a CT scan have been imported into Disior's software that displays the patient's skull as a hologram in front of one's eyes.

One gives the hologram a few commands, and the software starts to generate mathematical models for solutions best suited for the patient. The solution algorithm runs in a Cloud service, and only takes a moment give optimized answers about the implant and other treatment-related factors that are best suited for this particular patient. The surgery can then begin.

This will soon be an everyday tool for all doctors, and hopes are that the maxillofacial surgery unit at HUS will adopt it within a year. In addition to optimizing implant-related parameters, mathematical modelling can also assist in making a diagnosis, selecting a care pathway, planning for surgical operations and optimizing patient rehabilitation.

Disior aims to create separate versions of their software for various other purposes, from maxillofacial surgery to wrist fractures. This increases the usability of the software in the everyday clinical use: the physician only sees the essential information needed in the task at hand.

At present, most of the implants used in the treatment of bone fractures are made of titanium, but 3D-printed biomaterials for making "spare parts for humans" are becoming more common. These biomanufactured parts might, for example, contain cells and nutrients.

"Nothing prevents Disior from modelling even personalized implants in the future", stated Arto Poutala, Principal Developer responsible for optimization at Disior.

In addition, optimization creates vast amounts of data, which could be utilized by artificial intelligence in the future.

Disior is a pioneer in medical modelling.

"A few years from now, all physicians will use this kind of technology. We hope to see our solution deployed in the HUS already next year", concluded Arto Poutala.

The next PRACE SHAPE call for applications for SMEs starts in April 2018. For more information about the PRACE SHAPE call for applications, you can consult the PRACE SHAPE website.
Source: CSC - IT Center for Science

Back to Table of contents

Primeur weekly 2018-02-12

Quantum computing

New controls scale quantum chips ...

Controlling quantum interactions in a single material ...

Light controls two-atom quantum computation ...

Focus on Europe

TANGO project releases the Beta version of #TANGOToolbox to facilitate the effort of coding when targeting various hardware architectures ...

Nominations open for PRACE Ada Lovelace Award for HPC 2018 ...

Optalysys and The Earlham Institute achieve over 90% energy savings in breakthrough project applying optical processing for DNA sequence alignment ...

Middleware

Sylabs emerges from stealth to bring Singularity container technology to enterprise performance computing ...

Dell EMC expands server capabilities for software-defined, edge and high-performance computing ...

Hardware

Virtual reality helps explore the GPS of the mind ...

HiPerGator is the number 3 most powerful computer at a U.S. public university ...

Supermicro expands edge computing and network appliance portfolio with new high density SoC solutions ...

Supermicro introduces Silicon Valley's first 3-Megawatt clean energy automated rack integration facility ...

One Stop Systems introduces highest bandwidth, 5th generation NVMe ion accelerator flash storage array ...

Applications

University of Illinois researcher recognized with ACM Fellowship for contributions to parallel programming ...

After the storm: Simulating and visualizing extreme weather with XSEDE ...

XSEDE's Maverick helps explore next generation solar cells and LEDs ...

Optimized solutions for treating bone fractures will soon be reality ...

UMass Amherst computer science experts in artificial intelligence join IBM's AI Horizons Network ...

AI computer vision breakthrough IDs poachers in less than half a second ...

University of Chicago astrophysicists settle cosmic debate on magnetism of planets and stars ...

Portland State University joins nationwide program to develop brain-inspired computing ...

The Cloud

Ampere launches to accelerate hyperscale Cloud computing innovations ...

Oracle Cloud growth driving aggressive global expansion ...

Leading Cloud providers join with NSF to support data science frontiers ...

Smartly containing the Cloud increases computing efficiency, according to first-of-its-kind study ...