Back to Table of contents

Primeur weekly 2016-02-22

Crowd computing

Come and build Sisunen, a real supercomputer ...

Quantum computing

A new spin on quantum computing: Scientists train electrons with microwaves ...

Focus on Europe

Bright Computing names Bill Wagner as Chief Executive Officer ...

PRACEdays16 registration is now open ...

ISC High Performance keynote proclaims women's excellence in computational science ...

Flemish Supercomputer Centre selects Mellanox's end-to-end EDR 100Gb/s InfiniBand solution to further science and medical research ...

Middleware

IBM delivers Blockchain-as-a-Service for developers and commits to making blockchain ready for business ...

Hardware

IBM and Cognitiva to usher in a new era of cognitive computing using Watson in Latin America ...

New supercomputer for computational chemistry, biology and physics at University of Western Australia ...

FlashLite sets SPEC benchmark world records ...

GridGain raises $15 million in Series B financing led by Sberbank and MoneyTime Ventures ...

Met Office celebrates 'topping out' of supercomputer complex ...

Applications

Groundbreaking leader of computation at Lawrence Livermore National Laboratory retires ...

Titan probes depths of biofuel's biggest barrier ...

New projects pair U.S. manufacturers with Oak Ridge National Laboratory computing resources ...

AweSim-EWI project among those chosen for DOE HPC4Mfg award ...

Simulation reconstructs in detail the volcanic super-eruption which slowed the advance of modern man in Europe ...

University of Nebraska-Licoln supercomputers help gravitational wave discovery ...

The Cloud

EMC and VMware introduce hyper-converged VCE VXRAIL Appliance family ...

IBM unveils new mainframe for encrypted hybrid Clouds ...

Calix uses Oracle Cloud Platform to accelerate innovation ...

IBM Watson Health announces plans to acquire Truven Health Analytics for $2.6B, extending its leadership in value-based care solutions ...

Zycko deploys VM Aware storage solution from Mellanox and Tintri for private Cloud data centre ...

Award honours work of Genomics Virtual Lab team at University of Queensland ...

Connected high-speed data storage coming to University of Queensland ...

University of Nebraska-Licoln supercomputers help gravitational wave discovery


The Holland Computing Center is located in the June and Paul Schorr III Center for Computer Science and Engineering
12 Feb 2016 Lincoln - Detecting gravitational waves that emerged from a collision of black holes about 1.3 billion years ago took the efforts of 1,000-plus scientists over more than two decades, culminating with a February 11 announcement of the historic feat. As it turns out, crunching the galaxies of data spawned by the discovery has also demanded collaboration - this time among a series of global supercomputer networks guided in part by computer scientists at University of Nebraska-Lincoln's Holland Computing Center.

The first-ever observation of gravitational waves, which were predicted by Albert Einstein's general theory of relativity, resulted from the work of the U.S-based Laser Interferometer Gravitational-wave Observatory, or LIGO.

Though LIGO has its own supercomputing network, it also received assistance from the Open Science Grid - a global consortium of more than 125 institutions, including University of Nebraska-Lincoln (UNL), that offers its collective large-scale computing power to scientific projects big and small.

Since September 2015, when LIGO detectors recorded a signal representing the first direct evidence of gravitational waves, physicists have been busy seeking answers to their many questions about the phenomenon.

"That actually requires quite a bit of computational power", stated Brian Bockelman, UNL research assistant professor of computer science and engineering. "It's like LIGO heard this big, wild foghorn, and they're now looking for whispers in the data, too. The Open Science Grid provides a lot of computational resources for that, and it's really focusing on what's called distributed high-throughput computing, where you're trying to get lots and lots of these computational jobs to run at as many places as possible."

Brian Bockelman heads up a division of the Open Science Grid that assembles its software to best serve the needs of the physicists, biologists, chemists and other scientists who regularly use it. In this case, Brian Bockelman and his colleagues facilitated the porting of code from LIGO's data facilities to the Open Science Grid, helping the observatory perform its data analyses as "opportunistically" as possible.

"If you have a cluster of computers, you often allocate it to meet your peak needs", Brian Bockelman stated. "But if a grad student has gone to bed or it's Christmas vacation, for example, you have these gaps where maybe you don't use it at 100 percent - it's maybe closer to 80 percent. Where LIGO was benefiting was that they could take this 10 percent here, that 15 percent there, and put them all together into one larger resource pool to get their computations done."

UNL's Holland Computing Center served as a hub for distributing LIGO's data to about 15 computing clusters throughout the United States, Brian Bockelman said, temporarily housing a partial copy of the observatory's dataset. In total, UNL's facilities served out about one petabyte of LIGO data - roughly 1,000 times more than the storage capacity of a typical desktop hard drive - from late October through mid-December 2015.

The university's contribution was possible only because of a 2014 network upgrade that pushed its data transfer rate from 10 gigabits to 100 gigabits per second.

"This project, all by itself, required 10 gigabits", Brian Bockelman stated. "We couldn't have done this before the upgrade. We worked really hard on that development, so it was nice to see it pay off."

UNL's involvement in the LIGO project also stems from its long-term work on another global scientific endeavour: the particle smasher known as the Large Hadron Collider. As part of the Worldwide LHC Computing Grid, the university houses a Tier-2 site that stores and computes data for specific analyses of particle collisions.

Ken Bloom, associate professor of physics and astronomy, oversaw the U.S. segment of the Tier-2 grid from 2005 until 2015. He's since been appointed manager of software and computing for a U.S. operations programme dedicated to one of the LHC's massive particle detectors.

"This was what we imagined all along when we started the Nebraska Tier-2 centre and put it on the Open Science Grid - that our computers would be available for other scientists when we weren't using them heavily, and vice versa", Ken Bloom stated. "It actually works in real life; sharing resources benefits everyone. I'm glad that we had a chance to help out and excited to have this very small connection to a historic scientific result."

Ken Bloom also credited Brian Bockelman with advancing the state of the high-throughput computing that has become a cornerstone of contemporary scientific collaboration.

"Brian is one of the key people who has made Grid computing actually work for scientists", Ken Bloom stated. "He is a veritable Swiss army knife in his versatility and our go-to guy for all kinds of problems. Between the LIGO result and the observation of the Higgs boson in 2012, he's made contributions to two Nobel-level scientific results in the past four years."
Source: University of Nebraska-Lincoln - Holland Computing Center

Back to Table of contents

Primeur weekly 2016-02-22

Crowd computing

Come and build Sisunen, a real supercomputer ...

Quantum computing

A new spin on quantum computing: Scientists train electrons with microwaves ...

Focus on Europe

Bright Computing names Bill Wagner as Chief Executive Officer ...

PRACEdays16 registration is now open ...

ISC High Performance keynote proclaims women's excellence in computational science ...

Flemish Supercomputer Centre selects Mellanox's end-to-end EDR 100Gb/s InfiniBand solution to further science and medical research ...

Middleware

IBM delivers Blockchain-as-a-Service for developers and commits to making blockchain ready for business ...

Hardware

IBM and Cognitiva to usher in a new era of cognitive computing using Watson in Latin America ...

New supercomputer for computational chemistry, biology and physics at University of Western Australia ...

FlashLite sets SPEC benchmark world records ...

GridGain raises $15 million in Series B financing led by Sberbank and MoneyTime Ventures ...

Met Office celebrates 'topping out' of supercomputer complex ...

Applications

Groundbreaking leader of computation at Lawrence Livermore National Laboratory retires ...

Titan probes depths of biofuel's biggest barrier ...

New projects pair U.S. manufacturers with Oak Ridge National Laboratory computing resources ...

AweSim-EWI project among those chosen for DOE HPC4Mfg award ...

Simulation reconstructs in detail the volcanic super-eruption which slowed the advance of modern man in Europe ...

University of Nebraska-Licoln supercomputers help gravitational wave discovery ...

The Cloud

EMC and VMware introduce hyper-converged VCE VXRAIL Appliance family ...

IBM unveils new mainframe for encrypted hybrid Clouds ...

Calix uses Oracle Cloud Platform to accelerate innovation ...

IBM Watson Health announces plans to acquire Truven Health Analytics for $2.6B, extending its leadership in value-based care solutions ...

Zycko deploys VM Aware storage solution from Mellanox and Tintri for private Cloud data centre ...

Award honours work of Genomics Virtual Lab team at University of Queensland ...

Connected high-speed data storage coming to University of Queensland ...