Back to Table of contents

Primeur weekly 2012-02-27

Desktop Grids

First release of XtremWeb-HEP 8

Parabon announces Frontier 6 at Emerging Technologies Symposium

The Cloud

Clinical Quality Measures (CQMs) Engine powers Imagine MD's Electronic Health Record - Practice Management and Revenue Management Solutions

At the CeBIT Fair, Karlsruhe Institute of Technology and FZI will present safe concepts for the Cloud

PALLADIO software simulator analyzes programmes prior to implementation

EuroFlash

Wirth Research set to race into the future with Bull High Performance Computing and Panasas Storage solutions

German supercomputer Hermit performance of the Petaflop class for research, development and industry

Rogue Wave Software and Moscow State University collaborate to debug on Russia's largest supercomputer

Science and Technology Committee publishes report on science in the Met Office

Saving data in vortex structures - New physical phenomenon could drastically reduce energy consumption by computers

CoolEmAll to address energy implications of European Commission HPC investment

USFlash

Cray forms new subsidiary in China

The Green Grid welcomes individual memberships for the first time in its history

University of Texas at Austin Supercomputing Center to receive $10 million in private funding

Scoping the cost of the world's biggest new supercomputer

Mathematician sees artistic side to father of computer

UC Santa Barbara researcher's new study may lead to MRIs on a nanoscale

Transforming computers of the future with optical interconnects

Intel's next-generation communications platform key to accelerated network services

HP helps telecoms tap LTE networks to deliver personalized mobile experience

THOR.LO streamlines infrastructure footprint with HP

NIST reveals switching mechanism in promising computer memory device

Engineering and geoscience faculty help lead $3 million NSF Delta research collaboration

Twists to quantum technique for secret messaging give unanticipated power

Paving the way to Canada's next big industry - the quantum information frontier

SanDisk develops world's smallest 128Gb NAND flash memory chip

Single-atom transistor is perfect

Transforming computers of the future with optical interconnects

23 Feb 2012 Washington - In order to build the next generation of very large supercomputers, it's essential that scientists and engineers find a way to seamlessly scale computation performance without exceeding extraordinary power consumption. It is widely agreed that the major challenge to scaling future systems will no longer be the Complementary Metal–Oxide–Semiconductor (CMOS) integrated circuit technology but rather the data movement among processors and memory. The rapidly evolving technology of photonic interconnects promises to deliver this increase in computing capabilities by providing ultra-high communication bandwidths with extreme energy efficiency and should therefore provide the impetus to move the technology from the lab into actual products.

The ability to manufacture photonic interconnect components - modulators, detectors, waveguides, and filters - on silicon substrates has finally been realized, and these optical interconnect structures show great potential for both intrachip and interchip applications.

HP Labs, the central research lab for Hewlett Packard (HP) in Palo Alto, California, is studying how this shift to light-based interconnects may revolutionize the way computers are built. Moray McLaren of HP will present his findings at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference, taking place March 4-8 at the Los Angeles Convention Center.

"This is an exciting time because it's a big transition for the industry", stated Moray McLaren, a researcher in HP Labs' Exascale Computing Lab, focused on inventing computer fabrics for next-generation IT solutions using a cross-layer, interdisciplinary approach. "In many respects, it's one of the inevitable forces of technology that's been much-heralded for 10 years. There's finally industry-wide agreement that it will happen. We've reached the point where we can say that it's an essential technology - we'll need to have optical interconnects to deliver these machines in the 2017-2019 timeframe."

How will these optical technologies change the way computers are built? Computer architects hold essentially two views on the role photonics will play.

One widely held view is that photonic interconnects are simply "smarter wire", explained Moray McLaren. "Today's computers are connected with copper cable up to a certain distance, currently about 8 meters, and as data rates continue to increase, this threshold will drop to less than a meter. And once the threshold is exceeded, the interconnect transitions from copper to optics."

While high-speed electronic interconnects are becoming increasingly range-limited, they still tend to cost less than optical interconnects. "The result is that people are contorting the way they build systems to use as many of the less expensive electronic connections as possible - and non-optimal wiring topologies", noted Moray McLaren.

The other viewpoint suggests that the characteristics and capabilities of optical communication are sufficiently different to the way things are done electronically - meaning that we need to entirely rethink how to build computers.

"There are things that we might do differently because the characteristics of optical interconnects are different", Moray McLaren pointed out. "One very simple example is that within a data centre, distance isn't much of a factor after you've transitioned to an optical interconnect. Having paid the price of moving from the electronic domain into the optical domain, we can connect up any distance."

Another related topic that HP Labs is investigating, in terms of data centres, is pushing down power consumption. The power for computational parts is still reducing with Moore's Law, along with the shrinking size of the individual transistors. But the power related to electronic communication isn't shrinking nearly as much because it's tied to real-world connectors and cables that don't scale in the same way.

Two of the key benefits of photonics are that it has the potential to provide lower-power communication over certain distances, and moving into the optical world provides more headroom in channel capacity and bandwidth densities are much higher. "Photonic interconnects have very different properties than the electronic interconnects that underpin today's computer architectures. To gain the maximum benefit from emerging nanophotonic interconnects, it's necessary to reevaluate the design trade-off at the system architect level", Moray McLaren noted.

Techniques that have fallen out of use in the electronic domain due to signal integrity considerations, such as broadcast and circuit switching, can be exploited to significant advantage in optical interconnects. Moving forward, the development of integrated CMOS nanophotonics will be critical to achieving the objectives of the most demanding computer development programmes.

Moray McLaren's presentation at OFC/NFOEC, titled "Future computing architectures enabled by optical and nanophotonic interconnects", will take place Tuesday, March 6 at 5 p.m. in the Los Angeles Convention Center.
Source: Optical Society of America

Back to Table of contents

Primeur weekly 2012-02-27

Desktop Grids

First release of XtremWeb-HEP 8

Parabon announces Frontier 6 at Emerging Technologies Symposium

The Cloud

Clinical Quality Measures (CQMs) Engine powers Imagine MD's Electronic Health Record - Practice Management and Revenue Management Solutions

At the CeBIT Fair, Karlsruhe Institute of Technology and FZI will present safe concepts for the Cloud

PALLADIO software simulator analyzes programmes prior to implementation

EuroFlash

Wirth Research set to race into the future with Bull High Performance Computing and Panasas Storage solutions

German supercomputer Hermit performance of the Petaflop class for research, development and industry

Rogue Wave Software and Moscow State University collaborate to debug on Russia's largest supercomputer

Science and Technology Committee publishes report on science in the Met Office

Saving data in vortex structures - New physical phenomenon could drastically reduce energy consumption by computers

CoolEmAll to address energy implications of European Commission HPC investment

USFlash

Cray forms new subsidiary in China

The Green Grid welcomes individual memberships for the first time in its history

University of Texas at Austin Supercomputing Center to receive $10 million in private funding

Scoping the cost of the world's biggest new supercomputer

Mathematician sees artistic side to father of computer

UC Santa Barbara researcher's new study may lead to MRIs on a nanoscale

Transforming computers of the future with optical interconnects

Intel's next-generation communications platform key to accelerated network services

HP helps telecoms tap LTE networks to deliver personalized mobile experience

THOR.LO streamlines infrastructure footprint with HP

NIST reveals switching mechanism in promising computer memory device

Engineering and geoscience faculty help lead $3 million NSF Delta research collaboration

Twists to quantum technique for secret messaging give unanticipated power

Paving the way to Canada's next big industry - the quantum information frontier

SanDisk develops world's smallest 128Gb NAND flash memory chip

Single-atom transistor is perfect