Back to Table of contents

Primeur weekly 2012-02-13

The Cloud

Oracle buys Taleo ...

Tulip Telecom and IBM build India's largest data centre to address rapid growth of mobile consumers in emerging markets ...

HP powers application performance testing in the Cloud ...

Desktop Grids

Registration open for the 14th IDGF tutorial at Johannes Gutenberg Universität in Mainz ...

SAT@home to join BOINC platform ...

EuroFlash

ATEME and Bull partner for extreme performance ...

Bull reaffirms its outsourcing credentials for the most mission-critical SAP environments ...

Altair and Ontonix offer complexity management solution for achieving simple and robust design ...

Digital Sports Group to commission supercomputer for football.co.uk ...

Europe goes for computing technologies as driver for competitiveness ...

Scientists 'record' magnetic breakthrough ...

New technology platform for molecule-based electronics ...

USFlash

Cray forms new Big Data division and hires new General Manager ...

Oracle announces availability of Oracle Advanced Analytics for Big Data ...

Emerson Network Power receives ISO 13485 certification for manufacture of medical power supplies ...

Emerson Network Power to support Cavium OCTEON III multicore MIPS processor family on innovative ATCA Packet processing solutions ...

ARINC inaugurates new supercomputer for complex antenna engineering and analyses ...

Scripps research and technion scientists develop biological computer to encrypt and decipher images ...

IBM boosts XIV Storage System Gen3 performance three-fold with SSD caching option ...

NCAR representatives to host Supercomputer Use Workshop for University of Wyoming Faculty ...

University of Wyoming receives computational sciences designation ...

New supercomputer to help scientists reach for the stars ...

Engineers boost computer processor performance by over 20 percent ...

Governor Kasich announces 10-fold boost to Ohio's broadband network ...

Scripps research and technion scientists develop biological computer to encrypt and decipher images

7 Feb 2012 La Jolla - Scientists at The Scripps Research Institute in California and the Technion–Israel Institute of Technology have developed a "biological computer" made entirely from biomolecules that is capable of deciphering images encrypted on DNA chips. Although DNA has been used for encryption in the past, this is the first experimental demonstration of a molecular cryptosystem of images based on DNA computing. The study was published in a recent online-before-print edition of the journalAngewandte Chemie.

Instead of using traditional computer hardware, a group led by Professor Ehud Keinan of Scripps Research and the Technion created a computing system using bio-molecules. When suitable software was applied to the biological computer, it could decrypt, separately, fluorescent images of The Scripps Research Institute and Technion logos.

In explaining the work's union of the often-disparate fields of biology and computer science, Ehud Keinan notes that a computer is, by definition, a machine made of four components - hardware, software, input, and output. Traditional computers have always been electronic, machines in which both input and output are electronic signals. The hardware is a complex composition of metallic and plastic components, wires, and transistors, and the software is a sequence of instructions given to the machine in the form of electronic signals.

"In contrast to electronic computers, there are computing machines in which all four components are nothing but molecules", Ehud Keinan stated. "For example, all biological systems and even entire living organisms are such computers. Every one of us is a biomolecular computer, a machine in which all four components are molecules that 'talk' to one another logically."

The hardware and software in these devices, Ehud Keinan notes, are complex biological molecules that activate one another to carry out some predetermined chemical work. The input is a molecule that undergoes specific, predetermined changes, following a specific set of rules (software), and the output of this chemical computation process is another well-defined molecule.

When asked what a biological computer looks like, Ehud Keinan laughs. "Well", he stated, "it's not exactly photogenic." This computer is "built" by combining chemical components into a solution in a tube. Various small DNA molecules are mixed in solution with selected DNA enzymes and ATP. The latter is used as the energy source of the device.

"It's a clear solution - you don't really see anything", Ehud Keinan stated. "The molecules start interacting upon one another, and we step back and watch what happens." And by tinkering with the type of DNA and enzymes in the mix, scientists can fine-tune the process to a desired result.

"Our biological computing device is based on the 75-year-old design by the English mathematician, cryptanalyst, and computer scientist Alan Turing", Ehud Keinan stated. "He was highly influential in the development of computer science, providing a formalization of the concepts of algorithm and computation, and he played a significant role in the creation of the modern computer. Turing showed convincingly that using this model you can do all the calculations in the world. The input of the Turing machine is a long tape containing a series of symbols and letters, which is reminiscent of a DNA string. A reading head runs from one letter to another, and on each station it does four actions: 1) reading the letter; 2) replacing that letter with another letter; 3) changing its internal state; and 4) moving to next position. A table of instructions, known as the transitional rules, or software, dictates these actions. Our device is based on the model of a finite state automaton, which is a simplified version of the Turing machine."

Now that he has shown the viability of a biological computer, does Ehud Keinan hope that this model will compete with its electronic counterpart?

"The ever-increasing interest in biomolecular computing devices has not arisen from the hope that such machines could ever compete with electronic computers, which offer greater speed, fidelity, and power in traditional computing tasks", Ehud Keinan stated. "The main advantages of biomolecular computing devices over electronic computers have to do with other properties."

As shown in this work, he continued, a wealth of information can be stored and encrypted in DNA molecules. Although each computing step is slower than the flow of electrons in an electronic computer, the fact that trillions of such chemical steps are done in parallel makes the entire computing process fast. "Considering the fact that current micro-array technology allows for printing millions of pixels on a single chip, the numbers of possible images that can be encrypted on such chips is astronomically large", he stated.

"Also, as shown in our previous work and other projects carried out in our lab, these devices can interact directly with biological systems and even with living organisms", Ehud Keinan explained. "No interface is required since all components of molecular computers, including hardware, software, input, and output, are molecules that interact in solution along a cascade of programmable chemical events." He added that because of DNA's ability to store information, major computer companies have been extremely interested in the development of DNA-based computing systems.

The first author of the study, "A Molecular Cryptosystem for Images by DNA Computing", is graduate student Sivan Shoshani of Technion. In addition to Ehud Keinan and Sivan Shoshani, authors include postdoctoral fellow Ron Piran of Scripps Research and Yoav Arava of the Technion. For more information on the paper, you can visitAngewandte Chemieat http://onlinelibrary.wiley.com/doi/10.1002/anie.201107156/abstract

This work was supported by the National Science Foundation, the Israel-US Binational Science Foundation, and the Skaggs Institute for Chemical Biology, as well as graduate fellowships from the Irwin and Joan Jacobs Foundation, the Fine Foundation, the Russell Berrie Nanotechnology Institute, and the Israel Ministry of Science and Technology.

Source: Scripps Research Institute

Back to Table of contents

Primeur weekly 2012-02-13

The Cloud

Oracle buys Taleo ...

Tulip Telecom and IBM build India's largest data centre to address rapid growth of mobile consumers in emerging markets ...

HP powers application performance testing in the Cloud ...

Desktop Grids

Registration open for the 14th IDGF tutorial at Johannes Gutenberg Universität in Mainz ...

SAT@home to join BOINC platform ...

EuroFlash

ATEME and Bull partner for extreme performance ...

Bull reaffirms its outsourcing credentials for the most mission-critical SAP environments ...

Altair and Ontonix offer complexity management solution for achieving simple and robust design ...

Digital Sports Group to commission supercomputer for football.co.uk ...

Europe goes for computing technologies as driver for competitiveness ...

Scientists 'record' magnetic breakthrough ...

New technology platform for molecule-based electronics ...

USFlash

Cray forms new Big Data division and hires new General Manager ...

Oracle announces availability of Oracle Advanced Analytics for Big Data ...

Emerson Network Power receives ISO 13485 certification for manufacture of medical power supplies ...

Emerson Network Power to support Cavium OCTEON III multicore MIPS processor family on innovative ATCA Packet processing solutions ...

ARINC inaugurates new supercomputer for complex antenna engineering and analyses ...

Scripps research and technion scientists develop biological computer to encrypt and decipher images ...

IBM boosts XIV Storage System Gen3 performance three-fold with SSD caching option ...

NCAR representatives to host Supercomputer Use Workshop for University of Wyoming Faculty ...

University of Wyoming receives computational sciences designation ...

New supercomputer to help scientists reach for the stars ...

Engineers boost computer processor performance by over 20 percent ...

Governor Kasich announces 10-fold boost to Ohio's broadband network ...