Back to Table of contents

Primeur weekly 2019-01-28

Focus

Prof. Dieter Kranzlmüller from the Leibniz Supercomputer Centre on German and European HPC: being best is better than being first ...

Quantum computing

Purdue dives deeper into potentially game-changing field of quantum science and engineering ...

Focus on Europe

New e-IRGSP6 support project held its kick-off meeting in Luxembourg ...

Powerful supercomputing to propel France's high-performance computing (HPC) and artificial intelligence (AI) research and development ...

PRACE to issue Call for Proposals for HPC compute resources from DECI-15 (Tier-1) ...

PRACE Summer of HPC 2019 has opened applications ...

New 2 Petaflop/s supercomputer at the University of Antwerp  ...

Dutch Government plans additional 100 million euro investment in science including 30 million for SKA Square Kilometre Array ...

Middleware

CMU's DeltaFS team aims to create smarter ways to organize and store supercomputer data ...

ScaleMP announces record results ...

Hardware

DDN's turnaround of Tintri wins Information Technology Deal of the Year Award ...

CSC, the Finnish IT Center for Science, and the Finnish Meteorological Institute select 200 Gigabit HDR InfiniBand to accelerate multi-phase supercomputer programme ...

2CRSI and "SNB Middle East" announce a distribution agreement ...

Aldec facilitates design prototyping in FPGA and prototype testing with new HES Proto-AXI ...

Applications

January kicks off a busy year of research as scientists gain access to the world's fastest supercomputer ...

National Center for Computational Sciences introduces HPC Core Operations Group ...

Network enhancement strengthens ties between OLCF and ESnet ...

Materials design centre receives $25 million grant ...

Birth of massive black holes in the early universe revealed ...

Transparent electronics research gains momentum ...

New insights into magnetic quantum effects in solids ...

Pilot line project lnPulse launches to give Europe edge in integrated photonics ...

Transparent electronics research gains momentum


Illustration of the defect screening approach: An element from the periodic table is taken and inserted in the bulk crystal at a selected defect site. The properties of the defective structure are calculated and the criteria for successful transparent conductor doping is evaluated. Graphic: José Flores-Livas, University Basel.
21 Jan 2019 Lugano - Intensive research is being carried out on transparent electronics, a new area of study that represents the merging of electronic and optical devices. Researchers at the University of Basel have used computer simulations on the "Piz Daint" supercomputer to identify chemical elements that could drive forward research in this field.

Transparent electronics are the future. Researchers all agree on this, including José A. Flores-Livas and Migle Grauzinyte from the research group headed by Stefan Goedecker, Professor of Computational Physics at the University of Basel. However, the relevant technological development is progressing sluggishly due to a shortage of certain transparent semiconductors with a high level of conductivity.

The electronic or optical properties of semiconductors can be manipulated and optimised by making use of appropriate impurities in the material. This doping with impurities, for example in transistors, changes the charge carrier density, thus increasing conductivity.

Identifying suitable impurities in the periodic table, however, often involves years of expensive laboratory experimentation. Researchers are attempting to speed up this process by using computer simulations. They use these to calculate the most promising candidates on the basis of physical laws that describe the interaction between the impurity and the material of the conductor. Potential candidates can then be tested in the laboratory in a targeted manner.

Researchers at the University of Basel used the "Piz Daint" supercomputer to carry out such complex simulations with the aim of finding suitable impurities that can be used to produce transparent conductors. But when it comes to transparent conductors, the main shortage is of high-performance conductors known as P-Type - positively charged carriers - in which the implanted impurity has one electron too few. Conversely, conductors known as N-Type - negatively charged carriers - are doped with elements that have, so to speak, a spare electron.

According to the researchers, it was recently found that the environmentally friendly and earth-abundant tin monoxide could be a very promising material for the production of transparent and high-performance P-Type conductors. It is also suitable for what is known as ambipolar doping, which is when both negative and positive charge carriers are combined in bipolar conductors. However, until now only a handful of elements have been examined that could be suitable as impurities for equipping the tin monoxide-based semiconductor with the desired properties.

Through their computations, the researchers identified alkali metals as full of potential. They were able to identify five alkali metals - lithium, sodium, potassium, rubidium and caesium - that could be introduced into tin monoxide in order to enable high-performance and transparent P-Type semiconductors. In addition, according to the researchers, the computations established 13 elements suitable for doping with N-Type charge carriers in tin monoxide. "If these elements can be successfully introduced into tin monoxide and the desired semiconductor can be produced, this would open new avenues for a range of transparent technologies", stated José A. Flores-Livas confidently.

Grauzinyte M., Goedecker S., and Flores-Livas J.A. are the authors of the paper titled " Towards bipolar tin monoxide: Revealing unexplored dopants ", published inPhysical Review Materials2, 104604 - October 2018 - DOI: https://doi.org/10.1103/PhysRevMaterials.2.104604.
Source: Swiss National Supercomputing Centre - CSCS

Back to Table of contents

Primeur weekly 2019-01-28

Focus

Prof. Dieter Kranzlmüller from the Leibniz Supercomputer Centre on German and European HPC: being best is better than being first ...

Quantum computing

Purdue dives deeper into potentially game-changing field of quantum science and engineering ...

Focus on Europe

New e-IRGSP6 support project held its kick-off meeting in Luxembourg ...

Powerful supercomputing to propel France's high-performance computing (HPC) and artificial intelligence (AI) research and development ...

PRACE to issue Call for Proposals for HPC compute resources from DECI-15 (Tier-1) ...

PRACE Summer of HPC 2019 has opened applications ...

New 2 Petaflop/s supercomputer at the University of Antwerp  ...

Dutch Government plans additional 100 million euro investment in science including 30 million for SKA Square Kilometre Array ...

Middleware

CMU's DeltaFS team aims to create smarter ways to organize and store supercomputer data ...

ScaleMP announces record results ...

Hardware

DDN's turnaround of Tintri wins Information Technology Deal of the Year Award ...

CSC, the Finnish IT Center for Science, and the Finnish Meteorological Institute select 200 Gigabit HDR InfiniBand to accelerate multi-phase supercomputer programme ...

2CRSI and "SNB Middle East" announce a distribution agreement ...

Aldec facilitates design prototyping in FPGA and prototype testing with new HES Proto-AXI ...

Applications

January kicks off a busy year of research as scientists gain access to the world's fastest supercomputer ...

National Center for Computational Sciences introduces HPC Core Operations Group ...

Network enhancement strengthens ties between OLCF and ESnet ...

Materials design centre receives $25 million grant ...

Birth of massive black holes in the early universe revealed ...

Transparent electronics research gains momentum ...

New insights into magnetic quantum effects in solids ...

Pilot line project lnPulse launches to give Europe edge in integrated photonics ...