Back to Table of contents

Primeur weekly 2019-01-14

Exascale supercomputing

Oak Ridge National Laboratory researchers and Hypres to test memory cell circuit design for memory boost ...

Quantum computing

IBM unveils world's first integrated quantum computing system for commercial use ...

ExxonMobil and world's leading research labs collaborate with IBM to accelerate joint research in quantum computing ...

Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture ...

Machine learning and quantum mechanics team up to understand water at the atomic level ...

Focus on Europe

Menta selected as sole provider of embedded FPGAs for European Processor Initiative ...

Signature of the acquisition contract for one of Europe's most powerful supercomputers ...

NCCR MARVEL PIs win swissuniversities grant to scale up computational open science platform Materials Cloud ...

Swiss National Science Foundation awards MARVEL a second tranche of CHF 18 million ...

e-IRG Chair, Prof. Dr. Gabriele von Voigt, on role of e-IRG in ESFRI Roadmap 2018 on Research Infrastructures in Europe ...

Hardware

Mellanox 200 Gigabit HDR InfiniBand to accelerate a world-leading supercomputer at the High-Performance Computing Center of the University of Stuttgart (HLRS) ...

IBM expands strategic partnership with Samsung to include 7nm chip manufacturing ...

AI-capable supercomputer ZF ProAI to provide maximum computing power and flexibility ...

Huawei unveils industry's highest-performance ARM-based CPU ...

Summit completes system acceptance ...

NREL's new supercomputer 'Eagle' takes flight ...

Supermicro offers Early Shipment Programme for server and storage systems with next-generation Intel Xeon Scalable processors and Intel Optane DC persistent memory ...

Supermicro shows world's fastest LN2 cooled overclockable Z390 motherboard at CES 2019 ...

Applications

U.S. Energy Department announces nearly $5 million in fossil energy research funding for universities ...

New IBM weather system to provide vastly improved forecasting around the world ...

Strengthening research on artificial intelligence: Two new professorships for AI methods in IT security and materials research at KIT ...

Turning animals monogamous ...

Titan takes fluoride from taps and toothpaste to batteries ...

ORNL team provides supercomputer-aided insights for how to turn plants into fuel and materials ...

Georgia State chemist among the first to perform research using world's most powerful supercomputer ...

ICHEC supercomputer user announced as winner of the 55th BTYSTE ...

Machine learning award powers Argonne leadership in engine design ...

A boost for artificial intelligence at the University of Freiburg ...

FAU creates Florida's first NSF-funded AI and deep learning laboratory ...

NCSA brings Dark Energy Survey data to science community into 2021 ...

Summit completes system acceptance

20 Dec 2018 Oak Ridge - A year-long acceptance process for the 200-petaflop, IBM AC922 Summit supercomputer at the US Department of Energy's Oak Ridge National Laboratory (ORNL) is complete. Acceptance testing ensures that the supercomputer and its file system meet the functionality, performance, and stability requirements agreed upon by the facility and the vendor.

To successfully complete acceptance, the Oak Ridge Leadership Computing Facility (OLCF) worked closely with system vendor IBM to test hundreds of system requirements and fix any resulting hardware, software, and network issues.

"Systems like Summit are usually serial number one. There is nothing like Summit on the market, and this was the first time a system of its scale was tested", stated Verónica Melesse Vergara, OLCF high-performance computing (HPC) support specialist and Summit acceptance lead.

In June and November 2018, Summit ranked first on the biannual TOP500 list of the world's most powerful supercomputers based on the High Performance Linpack benchmark. Summit's storage system, Alpine, also ranked first as the world’s fastest storage system on the November IO-500 list.

Even as Summit debuted on the international rankings list in June, OLCF team members were preparing for full system acceptance. After testing system hardware and benchmark requirements in spring 2018, the final months of acceptance focused on preparing to run a full workload of scientific applications.

Acceptance testing was a collaborative effort between OLCF, IBM, and partners NVIDIA, Mellanox, and Red Hat. Summit's architecture includes 4608 computing nodes, each comprising two IBM Power9 CPUs and six NVIDIA Volta GPUs connected with a Mellanox InfiniBand interconnect. Summit runs on a Linux operating system from Red Hat. Alpine is a 250-petabyte IBM Spectrum Scale parallel file system.

"All five organisations worked closely together to find, prioritize, and repair issues, which is one of the goals of acceptance: to validate and fix things now so the system is productive for scientists", stated Jim Rogers, National Center for Computational Sciences director of computing and facilities and Summit technical procurement officer (TPO).

The end of acceptance testing signals the beginning of the machine's scientific mission. Users from the OLCF Early Science Programme and the DOE Innovative and Novel Computational Impact on Theory and Experiment (INCITE) programme will begin work on Summit in January 2019.

The three main steps of acceptance testing ensure the machine is ready for full production, answering the basic questions: Can the machine work well? Can it successfully run the users' scientific codes? And can it work well and run scientific codes at full production?

During functionality tests, all system components and features must run successfully or, if they fail, recover as intended.

"Functionality tests basically determine whether the machine works well", stated HPC Operations Group team lead Don Maxwell, who has worked on OLCF acceptance teams for 13 years.

At the end of functionality tests, staff members are certain they can compile and run jobs on the system - an important requirement for beginning the second step of performance tests.

"We make sure all of the software, including the application launcher, the scheduler, compilers, programming models, and more, is performing as expected", Melesse Vergara stated.

Jim Rogers, who assessed whether the machine met acceptance requirements in his role as TPO, said Summit's acceptance plan was modelled after previous OLCF system acceptance plans, including those for the facility's Titan and Jaguar supercomputers. However, Summit comes with a new generation of complexities.

"These machines are getting so complicated that we're putting more of an emphasis on the depth and breadth of testing", Jim Rogers stated. "We now have about 30 sensor points on each node, so we can closely measure and better understand how the machine is running."

Sensors directly on the node enable OLCF staff to correlate data points such as cooling temperatures or network speed with performance measures, such as data transfer or GPU utilization. In this way, the sensors not only serve a purpose during acceptance; they will also be used for the lifetime of the machine to help operators predict and plan for maintenance.

"Predictive maintenance is just something that comes with machines of this scale", Jim Rogers stated. "The sensors are a long-term provision to make sure the machine operates efficiently with less repair time and a means to prevent failures."

To meet performance requirements, Summit needed to deliver an average 5-times speedup for scientific applications compared to OLCF’s previous scientific workhorse, the 27-petaflop Titan system.

"We run scientific applications in isolation to obtain a baseline performance metric for that application", Melesse Vergara stated. "We also run several test sizes to better understand performance of each application on the system."

Early results from Gordon Bell Prize finalists demonstrate that some codes are already seeing speedups well over this mark.

File system performance is also essential to system performance. Alpine performance requirements included a data transfer speed of 2.5 terabytes per second.

"The file system is the entry and exit point for Summit's acceptance. It is critical that the file system works in order for users to run on the supercomputer", stated Dustin Leverman, OLCF HPC storage engineer and Alpine acceptance lead.

To ensure that any one failure among Summit's many processors and nodes does not impact Summit users, the stability test monitors the resilience of the system under real conditions.

"The stability test gauges how the system is going to operate under high utilization, so we can be confident that it is ready to turn over to users", Jim Rogers stated.

Stability testing is the final and most strenuous leg of acceptance testing because it simulates a realistic workload that floods the system with thousands of jobs from different scientific applications.

"During stability testing, we run jobs on one node all the way up to the full size of the system", Don Maxwell stated.

To effectively monitor the performance of all these jobs, OLCF uses a "test harness" that tracks the status of each job as it is deployed and executed on the system. The stability test takes place over two weeks. At the same time, the functionality tests and performance tests that were already completed must run concurrently to test the resiliency of the system.

Now that Summit has passed acceptance, scientists can begin work in earnest. And the OLCF acceptance team?

"We're already applying lessons learned from Summit to acceptance plans for OLCF's future Frontier system, just like we did with Jaguar and Titan", Don Maxwell stated.
Source: Oak Ridge Leadership Computing Facility - OLCF

Back to Table of contents

Primeur weekly 2019-01-14

Exascale supercomputing

Oak Ridge National Laboratory researchers and Hypres to test memory cell circuit design for memory boost ...

Quantum computing

IBM unveils world's first integrated quantum computing system for commercial use ...

ExxonMobil and world's leading research labs collaborate with IBM to accelerate joint research in quantum computing ...

Quantum scientists demonstrate world-first 3D atomic-scale quantum chip architecture ...

Machine learning and quantum mechanics team up to understand water at the atomic level ...

Focus on Europe

Menta selected as sole provider of embedded FPGAs for European Processor Initiative ...

Signature of the acquisition contract for one of Europe's most powerful supercomputers ...

NCCR MARVEL PIs win swissuniversities grant to scale up computational open science platform Materials Cloud ...

Swiss National Science Foundation awards MARVEL a second tranche of CHF 18 million ...

e-IRG Chair, Prof. Dr. Gabriele von Voigt, on role of e-IRG in ESFRI Roadmap 2018 on Research Infrastructures in Europe ...

Hardware

Mellanox 200 Gigabit HDR InfiniBand to accelerate a world-leading supercomputer at the High-Performance Computing Center of the University of Stuttgart (HLRS) ...

IBM expands strategic partnership with Samsung to include 7nm chip manufacturing ...

AI-capable supercomputer ZF ProAI to provide maximum computing power and flexibility ...

Huawei unveils industry's highest-performance ARM-based CPU ...

Summit completes system acceptance ...

NREL's new supercomputer 'Eagle' takes flight ...

Supermicro offers Early Shipment Programme for server and storage systems with next-generation Intel Xeon Scalable processors and Intel Optane DC persistent memory ...

Supermicro shows world's fastest LN2 cooled overclockable Z390 motherboard at CES 2019 ...

Applications

U.S. Energy Department announces nearly $5 million in fossil energy research funding for universities ...

New IBM weather system to provide vastly improved forecasting around the world ...

Strengthening research on artificial intelligence: Two new professorships for AI methods in IT security and materials research at KIT ...

Turning animals monogamous ...

Titan takes fluoride from taps and toothpaste to batteries ...

ORNL team provides supercomputer-aided insights for how to turn plants into fuel and materials ...

Georgia State chemist among the first to perform research using world's most powerful supercomputer ...

ICHEC supercomputer user announced as winner of the 55th BTYSTE ...

Machine learning award powers Argonne leadership in engine design ...

A boost for artificial intelligence at the University of Freiburg ...

FAU creates Florida's first NSF-funded AI and deep learning laboratory ...

NCSA brings Dark Energy Survey data to science community into 2021 ...