Back to Table of contents

Primeur weekly 2018-01-29

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Combination of top-down initiatives like EuroHPC and bottom-up science driven projects make European exascale effort healthy ...

Quantum computing

Quantum race accelerates development of silicon quantum chip ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits ...

New metal-semiconductor interface for brain-inspired computing ...

Researchers from TU Delft combine spintronics and nanophotonics in 2D material ...

Retrospective test for quantum computers can build trust ...

Particle collision in large accelerators is simulated by using a quantum computer ...

Focus on Europe

EOSC-hub to launch integrated services for the European Open Science Cloud ...

Supercomputing Frontiers Europe 2018 launches invitation to participate ...

CESNET and GÉANT deploy 300 Gbps wavelength in R&E community ...

PRACE SHAPE Programme supports two further SMEs ...

Hardware

Most powerful Dutch GPU supercomputer boosts new radio telescope ...

Asetek receives order from Fujitsu for Institute of Fluid Science at Tohoku University ...

Applications

Researchers use sound waves to advance optical communication ...

NIST's superconducting synapse may be missing piece for 'artificial brains' ...

Scientists get better numbers on what happens when electrons get wet ...

UNSW Sydney scientist Michelle Simmons is Australian of the Year ...

San Diego County invests in new UC San Diego fire detection networking ...

Solving science and engineering problems with supercomputers and AI ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level ...

Scientists pioneer use of deep learning for real-time gravitational wave discovery ...

Dynaslum research team publishes in Nature Scientific Data ...

University of Texas at Arlington researchers use simulations to study brain damage from bomb blasts and materials for space shuttles ...

Ohio Supercomputer Center helping Ohio University researcher revolutionize drug discovery with RNA in the spotlight ...

Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure ...

Sensor the size of a nitrogen atom investigates hard drives ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level


This is a Field Programmable Gate Array module from Micron, where FWDNXT installs Snowflake, a deep neural network accelerator. Snowflake was designed with the primary goal of optimizing computational efficiency by processing multiples streams of information to mix deep learning and artificial intelligence techniques with augmented reality application. Snowflake is effective at image recognition and classification. Image provided by FWDNXT.
25 Jan 2018 West Lafayette - A Purdue University-affiliated start-up is designing next-generation hardware and software for deep learning aimed at enabling computers to understand the world in the same way humans do. FWDNXT, based in the Purdue Research Park, has developed a low-power mobile coprocessor called Snowflake for accelerating deep neural networks effective at image recognition and classification. Snowflake was designed with the primary goal of optimizing computational efficiency by processing multiple streams of information to mix deep learning and artificial intelligence techniques with augmented reality application.

"Everybody was looking for a solution like this", stated Eugenio Culurciello, an associate professor in the Weldon School of Biomedical Engineering at Purdue. "We have a special computer that can operate on large data very fast with low power consumption. Our mission is to propel machine intelligence to the next level."

Eugenio Culurciello said the goal of FWDNXT is to enable computers to understand the environment so computers, phones, tablets, wearables and robots can be helpful in daily activities. FWDNXT uses innovative algorithms to differentiate items the same ways humans do.

Eugenio Culurciello said Snowflake is able to achieve a computational efficiency of more than 91 percent on entire convolutional neural networks, which are the deep learning model of choice for performing object detection, classification, semantic segmentation and natural language processing tasks. Snowflake also is able to achieve 99 percent efficiency on some individual layers.

FWDNXT has shown expertise in scene analysis and scene parsing, which allows the computer to perceive the outside environment. That ability is among the most difficult challenges in augmented reality content, Eugenio Culurciello said.

FWDNXT's innovation in hardware and software will be used to drive cars autonomously, to recognize faces for security and other purposes and numerous other day-to-day purposes, such as helping people find items on their shopping lists as they walk down a store aisle or smart appliances recognizing a user's preferences.

Eugenio Culurciello said there has been remarkable development in machine learning in the past five years as computer scientists turned to specialized chips to do more complex computing instead of depending on a central processing unit.

"It can operate on large data very fast with low power consumption", Eugenio Culurciello stated. "We want to have the maximum performance with the minimal energy."

FWDNXT was able to create a new, efficient computer architecture with funding originally from grants it received from Purdue and the Navy, including one worth nearly $1 million.

Eugenio Culurciello said FWDNXT wants to make microchips that will be used in virtually all smart device - for instance, in cars to start them, in appliances to recognize persons' preferences, in mobile phone to listen to voices.

Eugenio Culurciello said FWDNXT has found a strategic partner, has obtained multimillion dollars in funding, and the next step is to seek Series A funding. FWDNXT also is looking to add to its team, which already includes Ali Zaidy, the lead architect designer of Snowflake and a deep learning expert; Abhishek Chaurasia, the team's deep learning lead developer; Andre Chang, architect and compiler of deep learning; and Marko Vitez, neural network optimization wizard.

Another big milestone will be to develop a prototype microchip due in the first half of 2018. FWDNXT has shown it can run on FPGA, but a custom microchip would make it even more efficient.

FWDNXT hopes to be selling programmable logic prototypes soon and hopes to be able to sell the initial microchips to preferred customers in the next year or so.

FWDNEXT has filed patent applications related to Snowflake through the Purdue Office of Technology Commercialization. Eugenio Culurciello also credited the Purdue Foundry, an entrepreneurship and commercialization accelerator in Discovery Park's Burton D. Morgan Center for Entrepreneurship at Purdue, with helping FWDNXT come up with a business plan that will help attract investors and expand its team.
Source: Purdue University

Back to Table of contents

Primeur weekly 2018-01-29

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Combination of top-down initiatives like EuroHPC and bottom-up science driven projects make European exascale effort healthy ...

Quantum computing

Quantum race accelerates development of silicon quantum chip ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits ...

New metal-semiconductor interface for brain-inspired computing ...

Researchers from TU Delft combine spintronics and nanophotonics in 2D material ...

Retrospective test for quantum computers can build trust ...

Particle collision in large accelerators is simulated by using a quantum computer ...

Focus on Europe

EOSC-hub to launch integrated services for the European Open Science Cloud ...

Supercomputing Frontiers Europe 2018 launches invitation to participate ...

CESNET and GÉANT deploy 300 Gbps wavelength in R&E community ...

PRACE SHAPE Programme supports two further SMEs ...

Hardware

Most powerful Dutch GPU supercomputer boosts new radio telescope ...

Asetek receives order from Fujitsu for Institute of Fluid Science at Tohoku University ...

Applications

Researchers use sound waves to advance optical communication ...

NIST's superconducting synapse may be missing piece for 'artificial brains' ...

Scientists get better numbers on what happens when electrons get wet ...

UNSW Sydney scientist Michelle Simmons is Australian of the Year ...

San Diego County invests in new UC San Diego fire detection networking ...

Solving science and engineering problems with supercomputers and AI ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level ...

Scientists pioneer use of deep learning for real-time gravitational wave discovery ...

Dynaslum research team publishes in Nature Scientific Data ...

University of Texas at Arlington researchers use simulations to study brain damage from bomb blasts and materials for space shuttles ...

Ohio Supercomputer Center helping Ohio University researcher revolutionize drug discovery with RNA in the spotlight ...

Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure ...

Sensor the size of a nitrogen atom investigates hard drives ...