Back to Table of contents

Primeur weekly 2018-01-22

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Exascale supercomputing

Exascale architectures lead to greener and more advanced combustion systems ...

Call for Proposals: Aurora Early Science Programme expands to include data and learning projects ...

Quantum computing

HKU quantum physicist Dr. Giulio Chiribella receives Croucher Senior Research Fellowship 2018 ...

New input for quantum simulations ...

Focus on Europe

Eni boots up HPC4 and makes its computing system the world's most powerful in the industry ...

ONERA to install new supercomputer for aerospace research ...

Atos to deliver the most powerful supercomputer in Germany at Forschungszentrum Jülich ...

Hardware

Cray announces selected preliminary 2017 financial results ...

India's Ministry of Earth Sciences deploys new Cray XC40 supercomputers and Cray storage systems ...

University of Virginia Engineering tapped to lead $27.5 million centre to reinvent computing ...

Asperitas creates AsperitasEI business unit to bring circular energy and data centre projects to life ...

CSRA selects edge solutions and Supermicro computer for expansion, increasing NASA computing capacity to 5 petaFLOPS ...

Mellanox ConnectX-5 Ethernet adapter wins Linley Group Analyst Choice Award for Best Networking Chip ...

Notre Dame to lead $26 million multi-university research centre developing next-generation computing technologies ...

New $32 million centre at University of Michigan reimagines how computers are designed ...

New C-BRIC centre will tackle brain-inspired computing ...

Ultra-thin memory storage device paves way for more powerful computing ...

Applications

US DOE announces funding for new HPC4Manufacturing industry projects ...

NOAA kicks off 2018 with massive supercomputer upgrade ...

UMass Center for Data Science partners with Chan Zuckerberg Initiative to accelerate science and medicine ...

Himawari-8 data assimilated simulation enables 10-minute updates of rain and flood predictions ...

Ohio Supercomputer Center to host free webinar on innovative web-based HPC portal ...

2D tin (stanene) without buckling: A possible topological insulator ...

Uncovering decades of questionable investments ...

Groundbreaking conference examines how AI transforms our world ...

Framework for Research Data Management makes life simpler for researchers ...

The Cloud

New centre headquartered at Carnegie Mellon will build smarter networks to connect edge devices to the Cloud ...

IBM and Salesforce strengthen strategic partnership ...

ANSYS and Rescale offer on-demand, pay-per-use ANSYS software on Rescale's ScaleX Cloud HPC platform ...

New $32 million centre at University of Michigan reimagines how computers are designed


The Center for Applications Driving Architectures, or ADA, at the University of Michigan will develop a transformative, "plug-and-play" ecosystem to encourage a flood of fresh ideas in computing frontiers such as autonomous control, robotics and machine-learning. Photo: Getty Images.
15 Jan 2018 Ann Arbor - As the computing industry struggles to maintain its historically rapid pace of innovation, a new, $32 million centre based at the University of Michigan aims to streamline and democratize the design and manufacturing of next-generation computing systems. The Center for Applications Driving Architectures, or ADA, will develop a transformative, "plug-and-play" ecosystem to encourage a flood of fresh ideas in computing frontiers such as autonomous control, robotics and machine-learning.

Today, analysts worry that the industry is stagnating, caught between physical limits to the size of silicon transistors and the skyrocketing costs and complexity of system design.

"The electronic industry is facing many challenges going forward, and we stand a much better chance of solving these problems if we can make hardware design more accessible to a large pool of talent", stated Valeria Bertacco, an Arthur F. Thurnau professor of computer science and engineering at the University of Michigan and director of the ADA Center. "We want to make it possible for anyone with motivation and a good idea to build novel high-performance computing systems."

The centre is a five-year project that's led by the University of Michigan and includes researchers from a total of seven universities, pending final contracts: Harvard University, MIT, Stanford University, Princeton University, University of Illinois and University of Washington.

ADA is funded by a consortium that is led by the Semiconductor Research Corporation and includes the Defense Advanced Research Projects Agency. The centre is one of six new centers recently announced as part of the Joint University Microelectronics Programme, organized by the Semiconductor Research Corporation.

ADA aims to democratize the development and deployment of advanced computing systems in several ways: It will develop a modular approach to system hardware and software design, where applications' internal algorithms are mapped to highly efficient and reusable accelerated hardware components. This faster and more effective approach will require that the entire design framework - from system software to architecture to design tools - be reimagined and rebuilt.

"You shouldn't need a Ph.D. to design new computing systems", Valeria Bertacco stated. "Five years from now, I'd like to see freshly minted college grads doing hardware start-ups."

Computing has had a monumental impact on society, but the path forward is uncertain. Researchers are looking for creative approaches to extend the utility of traditional silicon beyond the Moore's Law era, a long-standing but waning trend in which chips become cheaper to manufacture, and more powerful, each year.

ADA researchers see customized silicon for specific applications - like chips optimized for image search or data analytics - as a promising approach. But the biggest industrial customized silicon successes to date, such as smartphone systems-on-a-chip or graphics processing units, have required the immense resources of large, deeply integrated, vertical design teams. ADA's goal is to change that. The centre is organized into three themes:

  • Agile system development: The team will identify patterns in the core algorithms of emerging applications, such as virtual reality, machine learning and augmented reality, in order to map those algorithms to new, tailored computational blocks.This approach would slash design costs by building ready-to-use components that usher designs all the way from high-level computational languages to fully packaged systems.
  • Algorithms-driven architectures: The researchers will develop reusable, highly efficient algorithmic hardware accelerators for the computational blocks. Instead of targeting the application itself, designs will target the underlying algorithms. Special-purpose hardware designs can improve the efficiency-per-operation by several orders of magnitude over a general-purpose chip. Such special-purpose hardware design occurs today, but it can take a decade after a need is identified before mature and efficient solutions are available, and it requires extremely specialized expertise, the researchers say.
  • Technology-driven systems: A key aspect of this theme involves developing an open-source chip scaffold for these new, accelerator-centric systems. The scaffolds would include all the necessary support subsystems, such as general-purpose cores, on-chip communication fabric, and memories, to facilitate a "plug-and-play" flow. "One will no longer need to send a design to the fab and wait for a chip to come back. They may still need a clean room to assemble a system, but this will be much simpler and more economical", Valeria Bertacco stated. Researchers will also explore technology innovations independent of silicon scaling.

"This is a daring and progressive approach to system design that stands to revolutionize the computing industry", stated Alec Gallimore, who is the Robert J. Vlasic Dean of Engineering, the Richard F. and Eleanor A. Towner Professor, an Arthur F. Thurnau Professor, and a professor both of aerospace engineering and of applied physics. "The work of this new centre will empower generations of engineers and computer scientists to design and build the systems that can bring their ideas to life."

DARPA and the Semiconductor Research Corporation will contribute $27.5 million to this project, with the remaining funds provided by the participating institutions. The Semiconductor Research Corporation is a global, high technology-based consortium that serves as a crossroads of collaboration between technology companies, academia, government agencies, and SRC's engineers and scientists.
Source: University of Michigan

Back to Table of contents

Primeur weekly 2018-01-22

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Exascale supercomputing

Exascale architectures lead to greener and more advanced combustion systems ...

Call for Proposals: Aurora Early Science Programme expands to include data and learning projects ...

Quantum computing

HKU quantum physicist Dr. Giulio Chiribella receives Croucher Senior Research Fellowship 2018 ...

New input for quantum simulations ...

Focus on Europe

Eni boots up HPC4 and makes its computing system the world's most powerful in the industry ...

ONERA to install new supercomputer for aerospace research ...

Atos to deliver the most powerful supercomputer in Germany at Forschungszentrum Jülich ...

Hardware

Cray announces selected preliminary 2017 financial results ...

India's Ministry of Earth Sciences deploys new Cray XC40 supercomputers and Cray storage systems ...

University of Virginia Engineering tapped to lead $27.5 million centre to reinvent computing ...

Asperitas creates AsperitasEI business unit to bring circular energy and data centre projects to life ...

CSRA selects edge solutions and Supermicro computer for expansion, increasing NASA computing capacity to 5 petaFLOPS ...

Mellanox ConnectX-5 Ethernet adapter wins Linley Group Analyst Choice Award for Best Networking Chip ...

Notre Dame to lead $26 million multi-university research centre developing next-generation computing technologies ...

New $32 million centre at University of Michigan reimagines how computers are designed ...

New C-BRIC centre will tackle brain-inspired computing ...

Ultra-thin memory storage device paves way for more powerful computing ...

Applications

US DOE announces funding for new HPC4Manufacturing industry projects ...

NOAA kicks off 2018 with massive supercomputer upgrade ...

UMass Center for Data Science partners with Chan Zuckerberg Initiative to accelerate science and medicine ...

Himawari-8 data assimilated simulation enables 10-minute updates of rain and flood predictions ...

Ohio Supercomputer Center to host free webinar on innovative web-based HPC portal ...

2D tin (stanene) without buckling: A possible topological insulator ...

Uncovering decades of questionable investments ...

Groundbreaking conference examines how AI transforms our world ...

Framework for Research Data Management makes life simpler for researchers ...

The Cloud

New centre headquartered at Carnegie Mellon will build smarter networks to connect edge devices to the Cloud ...

IBM and Salesforce strengthen strategic partnership ...

ANSYS and Rescale offer on-demand, pay-per-use ANSYS software on Rescale's ScaleX Cloud HPC platform ...