Back to Table of contents

Primeur weekly 2018-01-08

Crowd computing

GIMPS Project discovers largest known prime number ...

Focus on Europe

OpenAIRE datathon encouraging developers and data scientists to analyse the OpenAIRE Information Space ...

HPC User Forum to be hosted at Teratec in March 2018 ...

Overview of European HPC research ...

ERC grantee behind discovery of major hardware bugs ...

University of Paderborn full member of the Gauss Alliance e.V. ...

Bulgarian Presidency of the Council of the EU to host Flagship Conference "Research Infrastructures beyond 2020 - sustainable and effective ecosystem for science and society" ...

ICRI 2018 to be hosted in Vienna, Austria in September 2018 ...

Hardware

Samsung now mass producing industry's first 2nd-generation, 10-nanometer class DRAM ...

India's first multi-petaflops supercomputer to be inaugurated at the Indian Institute of Tropical Meteorology ...

Cray appoints Catriona Fallon to Board of Directors ...

Unhackable computer under development with $3.6 million DARPA grant ...

Mellanox ships BlueField system-on-chip platforms and SmartNIC adapters to leading OEMs and hyperscale customers ...

Applications

Carnegie Mellon reveals inner workings of victorious AI ...

Registration of ASC18 Student Supercomputer Challenge now open ...

SUTD researchers discover a Valleytronics route towards reversible computer ...

Computer science pioneer Bjarne Stroustrup to receive the 2018 Charles Draper Prize for Engineeering ...

Conference on Neural Information Processing Systems hosted the conversational intelligence challenge finals ...

A simplified formulation of lattice gauge theories for applications in particle physics as well as quantum simulations ...

ASC18 competition timeline released, setting the stage for AI computing challenge ...

Tailoring cancer treatments to individual patients ...

The Cloud

Intersect360 Research report shows Huawei emerging as a global leader in HPC market with Cloud and AI convergence solutions ...

Microsoft to acquire Avere Systems, accelerating high-performance computing innovation for media and entertainment industry and beyond ...

Cyfronet to host 4th edition of Workshop on Cloud Services for Synchronisation and Sharing ...

Gridsum and Peking University Law School establish legal AI Lab and Research Institute ...

A simplified formulation of lattice gauge theories for applications in particle physics as well as quantum simulations

5 Jan 2018 - Theorists from the field of quantum optics and particle physics have found a new and very general approach for the solution of lattice gauge theories.

It is not the daily occurrence that physicists from entirely different fields closely work together. However, in theoretical physics a general ansatz can offer solutions for a large variety of problems. A team of scientists from the Theory Division of Professor Ignacio Cirac at the Max Planck Institute of Quantum Optics has now for a couple of years collaborated with theorists from the field of particle physics, in order to find a new and simplified formulation of lattice gauge theories.

Gauge theories play a central role in many areas of physics. They are, for instance, the foundation of the theoretical description of the standard model of particle physics that has been developed in the 1970ies. In this theory, both the elementary particles and the forces that act between them are described in terms of fields, whereby gauge invariance has to be ensured: different configurations of these fields, which can be transformed into each other by generalized local rotations - so-called gauge transformations, should have no impact on related observable quantities such as the mass or charge of a particle or the strength of the interacting force. In the theoretical description, this local symmetry is ensured by introducing additional degrees of freedom in form of a gauge field. These degrees of freedom, however, are often partially redundant, rendering gauge theories very difficult to solve.

"It is our goal to find a formulation, i.e. the Hamiltonian of the system, which minimizes the complexity of its description. As a prototype, we take a special gauge system with only one dimension in space and time", explained Dr. Mari Carmen Bañuls, a senior scientist in the Theory Division of Professor Ignacio Cirac. For the simple case of one temporal and one spatial dimension, the gauge degrees of freedom are not truly independent and can in principle be integrated out, so it should be possible to find a description that does not require additional gauge degrees of freedom. At first sight, this makes these systems simpler to work with. "However, this approach has so far only been successful for Abelian gauge theories, the most simple case, in which gauge fields only interact with matter fields and not with themselves", Dr. Bañuls elaborated. "For non-Abelian theories like the ones that arise in the standard model the self-interaction of the gauge fields makes things much more complicated."

A fundamental tool for the numerical study of gauge models is lattice gauge theory. Here, the space-time continuum is approximated by a lattice of discrete points, still ensuring gauge invariance. Based on a lattice formulation the scientists have developed a new formulation of a non-Abelian SU(2) gauge theory in which the gauge degrees of freedom are integrated out. "This formulation is independent of the technique that is used to calculate the energy eigenstates of the systems. It can be used for any numerical or analytical method", Dr. Stefan Kühn emphasized who has worked on this topic for his doctoral thesis and is at present postdoc scientist at the Perimeter Institute for Theoretical Physics in Waterloo in Ontario, Canada. "However, we found out, that this formulation is especially well suited to solve the lattice gauge model with tensor networks."

The method of tensor networks has originally been developed by the MPQ scientists for the description of quantum many-body-systems in the context of quantum information theory. "Compared to other methods, tensor networks offer the advantage of providing information about the entanglement structure of the system", Mari Carmen Bañuls pointed out. "The direct access to the quantum correlations in the system offers new possibilities to characterize lattice gauge theories." And Stefan Kühn summarizes the versatility of the new method. "On the one hand, our formulation of a low-dimensional gauge theory makes it easier to calculate and predict certain phenomena in particle physics. On the other hand, it might be suited to design quantum simulators for applications in quantum computing", Olivia Meyer-Streng stated.

Mari Carmen Bañuls, Krzysztof Cichy, J. Ignacio Cirac, Karl Jansen, and Stefan Kühn are the authors of the paper titled "Efficient basis formulation for 1+1 dimensional SU(2) lattice gauge theory: Spectral calculations with matrix product states". The paper appeared inPhysical ReviewX 7, 041046 (2017), 28 November 2017 - DOI:10.1103/PhysRevX.7.041046.

Source: Max Planck Institute of Quantum Optics

Back to Table of contents

Primeur weekly 2018-01-08

Crowd computing

GIMPS Project discovers largest known prime number ...

Focus on Europe

OpenAIRE datathon encouraging developers and data scientists to analyse the OpenAIRE Information Space ...

HPC User Forum to be hosted at Teratec in March 2018 ...

Overview of European HPC research ...

ERC grantee behind discovery of major hardware bugs ...

University of Paderborn full member of the Gauss Alliance e.V. ...

Bulgarian Presidency of the Council of the EU to host Flagship Conference "Research Infrastructures beyond 2020 - sustainable and effective ecosystem for science and society" ...

ICRI 2018 to be hosted in Vienna, Austria in September 2018 ...

Hardware

Samsung now mass producing industry's first 2nd-generation, 10-nanometer class DRAM ...

India's first multi-petaflops supercomputer to be inaugurated at the Indian Institute of Tropical Meteorology ...

Cray appoints Catriona Fallon to Board of Directors ...

Unhackable computer under development with $3.6 million DARPA grant ...

Mellanox ships BlueField system-on-chip platforms and SmartNIC adapters to leading OEMs and hyperscale customers ...

Applications

Carnegie Mellon reveals inner workings of victorious AI ...

Registration of ASC18 Student Supercomputer Challenge now open ...

SUTD researchers discover a Valleytronics route towards reversible computer ...

Computer science pioneer Bjarne Stroustrup to receive the 2018 Charles Draper Prize for Engineeering ...

Conference on Neural Information Processing Systems hosted the conversational intelligence challenge finals ...

A simplified formulation of lattice gauge theories for applications in particle physics as well as quantum simulations ...

ASC18 competition timeline released, setting the stage for AI computing challenge ...

Tailoring cancer treatments to individual patients ...

The Cloud

Intersect360 Research report shows Huawei emerging as a global leader in HPC market with Cloud and AI convergence solutions ...

Microsoft to acquire Avere Systems, accelerating high-performance computing innovation for media and entertainment industry and beyond ...

Cyfronet to host 4th edition of Workshop on Cloud Services for Synchronisation and Sharing ...

Gridsum and Peking University Law School establish legal AI Lab and Research Institute ...