Back to Table of contents

Primeur weekly 2018-01-29

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Combination of top-down initiatives like EuroHPC and bottom-up science driven projects make European exascale effort healthy ...

Quantum computing

Quantum race accelerates development of silicon quantum chip ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits ...

New metal-semiconductor interface for brain-inspired computing ...

Researchers from TU Delft combine spintronics and nanophotonics in 2D material ...

Retrospective test for quantum computers can build trust ...

Particle collision in large accelerators is simulated by using a quantum computer ...

Focus on Europe

EOSC-hub to launch integrated services for the European Open Science Cloud ...

Supercomputing Frontiers Europe 2018 launches invitation to participate ...

CESNET and GÉANT deploy 300 Gbps wavelength in R&E community ...

PRACE SHAPE Programme supports two further SMEs ...

Hardware

Most powerful Dutch GPU supercomputer boosts new radio telescope ...

Asetek receives order from Fujitsu for Institute of Fluid Science at Tohoku University ...

Applications

Researchers use sound waves to advance optical communication ...

NIST's superconducting synapse may be missing piece for 'artificial brains' ...

Scientists get better numbers on what happens when electrons get wet ...

UNSW Sydney scientist Michelle Simmons is Australian of the Year ...

San Diego County invests in new UC San Diego fire detection networking ...

Solving science and engineering problems with supercomputers and AI ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level ...

Scientists pioneer use of deep learning for real-time gravitational wave discovery ...

Dynaslum research team publishes in Nature Scientific Data ...

University of Texas at Arlington researchers use simulations to study brain damage from bomb blasts and materials for space shuttles ...

Ohio Supercomputer Center helping Ohio University researcher revolutionize drug discovery with RNA in the spotlight ...

Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure ...

Sensor the size of a nitrogen atom investigates hard drives ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits


Superconducting quantum metamaterial consisting of an array of 15 twin qubits embedded in a coplanar wave guide. An SEM image of twin flux qubits (above) and a whole structure (below) are shown. Each qubit consists of two superconducting loops sharing one common central Josephson junction (alpha-junction) and four identical Josephson junctions located on the outer parts of the loops. The alpha-junction allows the magnetic flux to tunnel between the loops. The inset is a schematic of a single meta-atom - the twin flux qubit; the phases on nodes are shown Credit: NUST MISIS.
23 Jan 2018 Moscow - An international team consisting of Russian and German scientists has made a breakthrough in the creation of seemingly impossible materials. They have managed to create the world's first quantum metamaterial which can be used as a control element in superconducting electrical circuits.

Metamaterials are substances whose properties are determined not so much by the atoms they consist of, but by the atoms' structural arrangement. Each structure is hundreds of nanometers, and has its own set of properties that disappear when scientists try to separate the material into its components. That is why such a structure is called a meta-atom - not to be confused with the common atoms of Mendeleev's Periodic Table. Any substance consisting of meta-atoms is called a meta-material.

Until recently, another difference between atoms and meta-atoms was that the properties of conventional atoms were described by quantum mechanics equations, while meta-atoms were described by classical physics equations. However, the creation of qubits led to the emergence of a potential opportunity to construct metamaterials consisting of meta-atoms whose state could be described quantum-mechanically. However, this research required the creation of unusual qubits.

"An international team of scientists from NUST MISIS, Karlsruhe Institute of Technology in Germany, and IPHT Jena in Germany, led by Professor Alexey Ustinov, head of the NUST MISIS Laboratory of Superconducting Metamaterials, has created the world's first so-called 'twin' qubit, as well as a metamaterial on its basis. Thanks to the outstanding properties of the new material, it will be possible to create one of the key elements in superconducting electronic devices", stated Alevtina Chernikova, Rector of NUST MISIS.

Kirill Shulga, a researcher at the NUST MISIS Laboratory of Superconducting Metamaterials and the first author of the project, noted that a conventional qubit consists of a scheme that includes three Josephson junctions. The twin qubit however is composed of five junctions that are symmetric to the Central axis.

"Twin qubits were supposed to serve as a more complex system than the conventional superconducting qubits. The logic here is quite simple: a more complex (artificially complex) system, with a large number of degrees of freedom, has a higher number of factors that can influence its properties. When changing some external properties of the environment where our metamaterial is located, we can turn these properties on and off by turning the twin qubit from one state with certain properties to another with other properties", he added.

This became apparent during the experiment, as the whole metamaterial consisting of twin qubits switched over between two different modes.

"In one of the modes, the chain of qubits transmits electronic radiation in the microwave range very well while remaining a quantum element. In another mode, it turns the superconducting phase by 180 degrees and locks the transmission of electromagnetic waves through itself. Yet it still remains a quantum system. So with the help of a magnetic field, such a material can be used as a control element in systems for quantum signals (separate photons) in circuits, from which developing quantum computers consist of", stated Ilya Besedin, an engineer at the NUST MISIS Laboratory of Superconducting Metamaterials and one of the project's researchers.

It is hard to accurately calculate the properties of one twin qubit on a standard computer compared to the properties of a standard qubit. It is possible to reach the limit of complexity, a level close to or surpassing the capabilities of modern electronic computers, if qubits become several times more complex. Such a complex system can be used as a quantum simulator, i.e. a device that can predict or simulate properties of a certain real process or material.

As the researchers note, they had to sort out lots of theories to correctly describe the processes that occurs in quantum meta-materials. The article " The Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits " is the research's result, and was published inNature Communications.

Source: National University of Science and Technology - MISIS

Back to Table of contents

Primeur weekly 2018-01-29

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Combination of top-down initiatives like EuroHPC and bottom-up science driven projects make European exascale effort healthy ...

Quantum computing

Quantum race accelerates development of silicon quantum chip ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits ...

New metal-semiconductor interface for brain-inspired computing ...

Researchers from TU Delft combine spintronics and nanophotonics in 2D material ...

Retrospective test for quantum computers can build trust ...

Particle collision in large accelerators is simulated by using a quantum computer ...

Focus on Europe

EOSC-hub to launch integrated services for the European Open Science Cloud ...

Supercomputing Frontiers Europe 2018 launches invitation to participate ...

CESNET and GÉANT deploy 300 Gbps wavelength in R&E community ...

PRACE SHAPE Programme supports two further SMEs ...

Hardware

Most powerful Dutch GPU supercomputer boosts new radio telescope ...

Asetek receives order from Fujitsu for Institute of Fluid Science at Tohoku University ...

Applications

Researchers use sound waves to advance optical communication ...

NIST's superconducting synapse may be missing piece for 'artificial brains' ...

Scientists get better numbers on what happens when electrons get wet ...

UNSW Sydney scientist Michelle Simmons is Australian of the Year ...

San Diego County invests in new UC San Diego fire detection networking ...

Solving science and engineering problems with supercomputers and AI ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level ...

Scientists pioneer use of deep learning for real-time gravitational wave discovery ...

Dynaslum research team publishes in Nature Scientific Data ...

University of Texas at Arlington researchers use simulations to study brain damage from bomb blasts and materials for space shuttles ...

Ohio Supercomputer Center helping Ohio University researcher revolutionize drug discovery with RNA in the spotlight ...

Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure ...

Sensor the size of a nitrogen atom investigates hard drives ...