Back to Table of contents

Primeur weekly 2018-01-29

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Combination of top-down initiatives like EuroHPC and bottom-up science driven projects make European exascale effort healthy ...

Quantum computing

Quantum race accelerates development of silicon quantum chip ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits ...

New metal-semiconductor interface for brain-inspired computing ...

Researchers from TU Delft combine spintronics and nanophotonics in 2D material ...

Retrospective test for quantum computers can build trust ...

Particle collision in large accelerators is simulated by using a quantum computer ...

Focus on Europe

EOSC-hub to launch integrated services for the European Open Science Cloud ...

Supercomputing Frontiers Europe 2018 launches invitation to participate ...

CESNET and GÉANT deploy 300 Gbps wavelength in R&E community ...

PRACE SHAPE Programme supports two further SMEs ...

Hardware

Most powerful Dutch GPU supercomputer boosts new radio telescope ...

Asetek receives order from Fujitsu for Institute of Fluid Science at Tohoku University ...

Applications

Researchers use sound waves to advance optical communication ...

NIST's superconducting synapse may be missing piece for 'artificial brains' ...

Scientists get better numbers on what happens when electrons get wet ...

UNSW Sydney scientist Michelle Simmons is Australian of the Year ...

San Diego County invests in new UC San Diego fire detection networking ...

Solving science and engineering problems with supercomputers and AI ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level ...

Scientists pioneer use of deep learning for real-time gravitational wave discovery ...

Dynaslum research team publishes in Nature Scientific Data ...

University of Texas at Arlington researchers use simulations to study brain damage from bomb blasts and materials for space shuttles ...

Ohio Supercomputer Center helping Ohio University researcher revolutionize drug discovery with RNA in the spotlight ...

Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure ...

Sensor the size of a nitrogen atom investigates hard drives ...

Scientists get better numbers on what happens when electrons get wet


A new study paints a more accurate picture of how electrons behave after striking water, and how quickly they're snatched up in chemical reactions. Credit: Peter Allen/Institute for Molecular Engineering.
26 Jan 2018 Chicago - There's a particular set of chemical reactions that governs many of the processes around us - everything from bridges corroding in water to your breakfast breaking down in your gut. One crucial part of that reaction involves electrons striking water, and despite how commonplace this reaction is, scientists still have to use ballpark numbers for certain parts of the equation when they use computers to model them.

An article published in Nature Communications on January 16, 2018 offers a new and better set of numbers from researchers at the University of Chicago, Argonne and Lawrence Livermore National Laboratories, and the University of California-San Diego. By improving computer models, these numbers may eventually help scientists and engineers create better ways to split water for hydrogen fuel and other chemical processes.

When an electron is injected into water, the liquid captures it. The energy gain due to this process is called the electron affinity of water, and it's key to understanding and modeling processes such as those occurring in photo-electrochemical cells to split water to generate oxygen and hydrogen, according to Alex Gaiduk, a postdoctoral fellow at the University of Chicago and the lead author of the study.

Until now, scientists faced technical challenges while experimentally measuring the electron affinity of water, said co-author Giulia Galli, the Liew Family Professor at the Institute for Molecular Engineering at the University of Chicago and senior scientist at Argonne.

"Most of the results quoted in the literature as experimental numbers are actually values obtained by combining some measured quantities with crude theoretical estimates", Giulia Galli stated.

Accurate theoretical measurements have been out of reach for some time due to the difficulty and high computational cost of simulating the interactions of electrons with water, said University of California-San Diego Professor Francesco Paesani, a co-author of the study who has spent years developing an accurate potential for the modelling of liquid water. But through a combination of Francesco Paesani's models, Giulia Galli's group's theoretical methods and software and Argonne's supercomputer, they arrived at a new and surprising conclusion.

Fundamentally, the researchers sought to understand whether the liquid binds the electron right away. This determines whether the electron can eventually participate in chemical reactions as it hangs out in the liquid.

According to the results, the electron is bound, but its binding energy is much smaller than previously believed. This prompted the researchers to revisit a number of well-accepted data and models for the electron affinity of water.

"We found large differences between the affinity at the surface and in the bulk liquid. We also found values rather different from those accepted in the literature, which prompted us to revisit the full energy diagram of an electron in water", stated Lawrence Livermore National Laboratory scientist and coauthor T.A. Pham.

This finding has important consequences both for the fundamental understanding of the properties of water, as well as for understanding a type of reaction called reduction/oxidation reactions in aqueous solutions. These reactions are widespread in chemistry and biology, including how cells break down food for energy and how objects corrode in water.

Particularly, the information about the energy levels of water is often used during the computational screening of materials for photo-electrochemical cells to break apart water to produce hydrogen as fuel. Having a reliable estimate of the water electron affinity will lead to more robust and reliable computational protocols and better computational screening, the researchers said.

The methods for excited states used in this study were developed over the years by Giulia Galli and her co-workers, within collaborations involving T.A. Pham and Marco Govoni from Argonne. The study also used supercomputing resources at Argonne.

Source: University of Chicago

Back to Table of contents

Primeur weekly 2018-01-29

Focus

European Commission explains why Joint Undertaking is well suited as legal instrument to help create EuroHPC ecosystem ...

Combination of top-down initiatives like EuroHPC and bottom-up science driven projects make European exascale effort healthy ...

Quantum computing

Quantum race accelerates development of silicon quantum chip ...

Quantum control: Scientists develop quantum metamaterial from complex twin qubits ...

New metal-semiconductor interface for brain-inspired computing ...

Researchers from TU Delft combine spintronics and nanophotonics in 2D material ...

Retrospective test for quantum computers can build trust ...

Particle collision in large accelerators is simulated by using a quantum computer ...

Focus on Europe

EOSC-hub to launch integrated services for the European Open Science Cloud ...

Supercomputing Frontiers Europe 2018 launches invitation to participate ...

CESNET and GÉANT deploy 300 Gbps wavelength in R&E community ...

PRACE SHAPE Programme supports two further SMEs ...

Hardware

Most powerful Dutch GPU supercomputer boosts new radio telescope ...

Asetek receives order from Fujitsu for Institute of Fluid Science at Tohoku University ...

Applications

Researchers use sound waves to advance optical communication ...

NIST's superconducting synapse may be missing piece for 'artificial brains' ...

Scientists get better numbers on what happens when electrons get wet ...

UNSW Sydney scientist Michelle Simmons is Australian of the Year ...

San Diego County invests in new UC San Diego fire detection networking ...

Solving science and engineering problems with supercomputers and AI ...

Purdue-affiliated start-up designing next-generation hardware, software to propel computer intelligence to next level ...

Scientists pioneer use of deep learning for real-time gravitational wave discovery ...

Dynaslum research team publishes in Nature Scientific Data ...

University of Texas at Arlington researchers use simulations to study brain damage from bomb blasts and materials for space shuttles ...

Ohio Supercomputer Center helping Ohio University researcher revolutionize drug discovery with RNA in the spotlight ...

Cells of three aggressive cancers annihilated by drug-like compounds that reverse chemo failure ...

Sensor the size of a nitrogen atom investigates hard drives ...