Back to Table of contents

Primeur weekly 2017-01-30

Exascale supercomputing

Co-design centres to help make next-generation exascale computing a reality ...

Quantum computing

Supercool electrons ...

D-Wave announces D-Wave 2000Q quantum computer and first system order ...

Temporal Defense Systems purchases the first D-Wave 2000Q quantum computer ...

Fast track control accelerates switching of quantum bits ...

Focus on Europe

Bright Computing teams up with SGI to co-sponsor UK HPC & Big Data event ...

When life sciences become data sciences ...

PRACE Spring School 2017 - HPC for Life Sciences, registration is open ...

ITER and BSC tighten their collaboration to simulate the process of fusion power generation ...

Netherlands eScience Center to issue annual report ...

Middleware

BSC releases PyCOMPSs version 2.0 as a PIP installable package ...

Hardware

RSC gets the highest Elite status in the Intel Solutions for Lustre Reseller Programme ...

Finding a needle in the ocean ...

GIGABYTE selects Cavium QLogic 10/25GbE FastLinQ technology to power its next generation servers ...

Setting up light paths using the SURFnet Network Dashboard ...

Minerva will calculate gravitational waves faster than the Albert Einstein Institute's previous supercomputer ...

Applications

Big Brother will have some difficulty 'watching you' in future ...

Engineers eat away at Ms. Pac-Man score with artificial player ...

Mummy visualization impresses in computer journal ...

Berkeley launches RISELab, enabling computers to make intelligent real-time decisions ...

Model sheds light on inhibitory neurons' computational role ...

Using Big Data to understand immune system responses ...

Artificial intelligence uncovers new insight into biophysics of cancer ...

PPPL scientist uncovers physics behind plasma-etching process ...

Computer-aided drug design ...

IBM expands choices for PowerAI developers with TensorFlow ...

Hussein Aluie awarded hours on supercomputer at Argonne ...

CWI develops algorithms that shorten response time of ambulance ...

A rising peptide: Supercomputing helps scientists come closer to tailoring drug molecules ...

The Cloud

Oracle expands Startup Accelerator Programme to further promote global Cloud innovation ...

Technical computing hub UberCloud receives funding from Earlybird ...

Minerva will calculate gravitational waves faster than the Albert Einstein Institute's previous supercomputer


The new supercomputer "Minerva" of the "Astrophysical and Cosmological Relativity" Divsion at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) in Potsdam-Golm. Credit: A. Okulla/Max Planck Institute for Gravitational Physics.
24 Jan 2017 Potsdam - The new supercomputer "Minerva" has been put into operation at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI). With 9,504 compute cores, 38 TeraByte memory and a peak performance of 302.4 TeraFlop/s it is more than six times as powerful as its predecessor. The scientists of the department "Astrophysical and Cosmological Relativity" can now compute significantly more gravitational waveforms and also carry out more complex simulations.

Above all, the new computer cluster - named after the Roman goddess of wisdom - is used for the calculation of gravitational waveforms. These ripples in space time - measured for the first time directly in September 2015 - originate when massive objects such as black holes and neutron stars merge. Obtaining the exact forms of the emitted gravitational waves requires numerically solving Einstein's complicated, non-linear field equations on supercomputers like Minerva. The AEI has been at the forefront of this field for many years and its researchers have been making important contributions to the software tools of the trade.

Tracking down faint signals in the detectors' background noise and inferring information about astrophysical and cosmological properties of their sources requires calculating the mergers of many different binary systems such as binary black holes or pairs of a neutron star and a black hole, with different combinations of mass ratios and individual spins.

"Such calculations need a lot of compute power and are very time-consuming. The simulation of the first gravitational wave measured by LIGO lasted three weeks - on our previous supercomputer Datura", stated AEI director Professor Alessandra Buonanno. "Minerva is significantly faster and so we can now react even quicker to new detections and can calculate more signals."

The gravitational wave detectors Advanced LIGO in the USA (aLIGO) and GEO600 in Ruthe near Hanover started their second observational run ("O2") on 30 November 2016. aLIGO is now more sensitive than ever before: The detectors will be able to detect signals from about 20% further away compared to O1, which increases the event rate by more than 70%.

Researchers in the Astrophysical and Cosmological Relativity division at AEI have improved the capabilities of aLIGO detectors to observe and estimate parameters of gravitational-wave sources ahead of O2. For the search for binary black hole mergers, they have refined their waveform models using a synergy between numerical and analytical solutions of Einstein's equations of general relativity. They calibrated approximate analytical solutions - which can be computed almost instantly - with precise numerical solutions - which take very long even on powerful computers.

This allows the AEI researchers to use the available computing power more effectively and to search more quickly and discover more potential signals from merging black holes in O2, and to determine the nature of their sources. AEI researchers also have prepared simulations of merging neutron star and boson star binaries. These can be simultaneously observed in electromagnetic and gravitational radiation, and can provide new precise tests of Einstein's theory of general relativity.

Minerva runs on a Linux operating system and has the following features:

  • 594 compute nodes, each with 2x 8-core Intel Xeon processors E5-2630v3 (2.4 GHz), 64 GB DDR4 RAM; in total 9504 CPU cores
  • Intel Omni-Path interconnect (58 Gb/s node-switch, 100 Gb/s switch-switch)
  • 500 TB BeeGFS parallel file system
Source: Max Planck Institute for Gravitational Physics

Back to Table of contents

Primeur weekly 2017-01-30

Exascale supercomputing

Co-design centres to help make next-generation exascale computing a reality ...

Quantum computing

Supercool electrons ...

D-Wave announces D-Wave 2000Q quantum computer and first system order ...

Temporal Defense Systems purchases the first D-Wave 2000Q quantum computer ...

Fast track control accelerates switching of quantum bits ...

Focus on Europe

Bright Computing teams up with SGI to co-sponsor UK HPC & Big Data event ...

When life sciences become data sciences ...

PRACE Spring School 2017 - HPC for Life Sciences, registration is open ...

ITER and BSC tighten their collaboration to simulate the process of fusion power generation ...

Netherlands eScience Center to issue annual report ...

Middleware

BSC releases PyCOMPSs version 2.0 as a PIP installable package ...

Hardware

RSC gets the highest Elite status in the Intel Solutions for Lustre Reseller Programme ...

Finding a needle in the ocean ...

GIGABYTE selects Cavium QLogic 10/25GbE FastLinQ technology to power its next generation servers ...

Setting up light paths using the SURFnet Network Dashboard ...

Minerva will calculate gravitational waves faster than the Albert Einstein Institute's previous supercomputer ...

Applications

Big Brother will have some difficulty 'watching you' in future ...

Engineers eat away at Ms. Pac-Man score with artificial player ...

Mummy visualization impresses in computer journal ...

Berkeley launches RISELab, enabling computers to make intelligent real-time decisions ...

Model sheds light on inhibitory neurons' computational role ...

Using Big Data to understand immune system responses ...

Artificial intelligence uncovers new insight into biophysics of cancer ...

PPPL scientist uncovers physics behind plasma-etching process ...

Computer-aided drug design ...

IBM expands choices for PowerAI developers with TensorFlow ...

Hussein Aluie awarded hours on supercomputer at Argonne ...

CWI develops algorithms that shorten response time of ambulance ...

A rising peptide: Supercomputing helps scientists come closer to tailoring drug molecules ...

The Cloud

Oracle expands Startup Accelerator Programme to further promote global Cloud innovation ...

Technical computing hub UberCloud receives funding from Earlybird ...