Back to Table of contents

Primeur weekly 2015-01-26

Exascale supercomputing

BSC and Intel extend research collaboration on systems behaviour analysis and prediction at Exascale R&D Lab ...

NASA scientist joins groundbreaking UK supercomputing start-up ...

Second European Exascale Software Initiative, EESI2, is organizing its final international conference ...

The Cloud

Anthem teams with IBM to strengthen IT operational performance ...

The European Space Agency builds a private Cloud platform with Red Hat ...

AccelOps' latest release delivers interactive security and performance analytics plus Cloud monitoring ...

Oracle Voice brings a mobile, speech-enabled virtual assistant to the Oracle Sales Cloud in Release 9 on smart phones ...

EuroFlash

New Head of Astroparticle Physics European Consortium appointed ...

REF signals deep impact as EPSRC announces GPB30 million for Impact Acceleration Accounts ...

New laser for computer chips ...

Graphene brings quantum effects to electronic circuits ...

Square Kilometre Array: The Cosmology Engine ...

Computer scientists from Saarbruecken improve the privacy of the Internet currency Bitcoin ...

Graphene enables all-electrical control of energy flow from light emitters ...

USFlash

DataDirect Networks again dominates as world leader in 2014/2015 TOP500 global supercomputing list ...

DataDirect Networks Storage Fusion Xcelerator (SFX) flash cache technology wins Storage Visions Award ...

UCSD study shows why protein mutations lead to familial form of Parkinson's disease ...

UC San Diego physicist Frank Würthwein joins SDSC ...

SDSC supercomputers to assist UC San Diego's 'Extreme Events' Center ...

SDSC announces UC Graduate Summer Fellowship programme ...

New wind-farm computer simulations unlock increased power generation ...

The City University of New York selects SGI to power major research projects ...

Air Force Research Laboratory's Department of Defense Supercomputer Resource Center (DSRC) to receive new supercomputer ...

Supercomputer simulations yield method for predicting behaviour of new concrete formulas ...

Oracle tackles data centre cost and complexity with next-generation engineered systems ...

A 3D view of the Greenland Ice Sheet opens window on ice history ...

Dedicated Computing joins the Intel Cluster Ready programme to offer high-performance computing cluster solutions for bioinformatics research ...

Researchers get $1.4 million to advance 'Big Data' for genomic research ...

Optimizing optimization algorithms ...

Scientists set quantum speed limit ...

New signal amplification process set to transform communications, imaging, and computing ...

Square Kilometre Array: The Cosmology Engine

21 Jan 2015 Bielefeld - An international team of scientists have joined forces to lay the foundations for an experiment of truly astronomical proportions: putting together the biggest map of the Universe ever made. The experiment will combine signals from hundreds of radio dishes to make cosmic atlas. In a series of papers on the arXiv.org astrophysics pre-print website, an international team of researchers set out their plans for the mammoth survey. The cosmologist Professor Dr. Dominik Schwarz from Bielefeld University in Germany is one of these researchers.

Researchers from the Cosmology Science Working Group of the Square Kilometre Array (SKA) have worked out how to use the world's largest telescope for the task. "The team has produced an exciting collection of cutting-edge ideas that will help shape the future of cosmology", stated Working Group chair Roy Maartens, from the University of Western Cape in South Africa.

The SKA will be a collection of thousands of radio receivers and dishes spread across two sites in South Africa and Western Australia. When the first phase is completed in 2023, the SKA will have a total collecting area equivalent to 15 football pitches, and will produce more data in one day than several times the daily traffic of the entire internet. A second phase, due in the late 2020s, will be ten times larger still.

The key to mapping the cosmos is to detect the faint radio emission from hydrogen gas. "Hydrogen is the most common element in the Universe, so we see it everywhere", stated Phil Bull, from the University of Oslo in Norway. "This makes it ideal for tracing the way matter is distributed throughout space." This includes the mysterious dark matter, which is completely invisible to telescopes, but can be detected through its gravitational pull on other objects, like hydrogen-containing galaxies.

The standard way to map the positions of galaxies is to painstakingly detect the faint radio signals from many individual galaxies, staring at them for long enough to measure properties like their distance. Though time consuming, this method is the most accurate, allowing highly detailed 3D maps of the matter distribution to be made. By the late 2020's, the researchers hope to have found almost a billion galaxies in this way; in comparison, the largest galaxy surveys to date have mapped the positions of only around a million galaxies.

An exciting alternative option being developed by SKA researchers, and others, is to rapidly scan the telescopes across the sky, sacrificing accuracy but surveying a much larger area in a short period of time. "This will only give us a low-resolution map", stated Mario Santos, University of Western Cape, "but that's already enough to start answering some serious questions about the geometry of the Universe and the nature of gravity." The results from this type of "intensity mapping" survey could be ready as early as 2022.

For the astrophysicists, some of the biggest questions relate to dark energy, an enigmatic substance that appears to be making the Universe expand at an ever faster rate. "The SKA will allow the most precise investigations of dark energy to date", stated Alvise Raccanelli, from Johns Hopkins University, USA. "By using 3D maps of the distribution of galaxies, we can study dark energy and test Einstein's General Relativity better than any experiment so far", he added. Characteristic patterns in the galaxy distribution allow researchers to make extremely accurate measurements of how the cosmic expansion has changed over periods of billions of years.

Testing Einstein's theory is another top priority for cosmologists. "This will shed light on whether there is a '5th force' of nature", stated Gongbo Zhao from National Astronomical Observatories of China. "Seeing it would be the smoking gun if General Relativity is breaking down over cosmological distances."

Such a huge atlas of the distribution of matter in the Universe will also open a new window to investigate the first moments after the Big Bang. "What happens on ultra-large distance scales tells us something about how the newborn Universe behaved when it was only a tiny fraction of a second old", stated Stefano Camera, at the Jodrell Bank Centre for Astrophysics in Manchester, UK. The measurements will allow researchers to more closely scrutinise "cosmic inflation", the process that is believed to have sown the seeds of structures like galaxies and superclusters that we see today.

According to the scientists, it's not only by looking into the past that we can figure out how the Universe works. "By observing a billion galaxies at two different dates, ten years apart, the SKA will be able to measure the expansion of the Universe directly", stated Hans-Rainer Klöckner from the Max-Planck Institute for Radioastronomy in Germany. The cosmic expansion happens relatively slowly compared to the timescale of, say, a human lifetime, so performing a direct measurement like this "would be a major technical achievement", as well as providing more information on the nature of dark energy, said Hans-Rainer Klöckner.

In addition to 3D maps of the hydrogen radio emission, the SKA will also make two-dimensional maps using the total radio-wave emissions of galaxies. "These maps will contain hundreds of millions of galaxies, and billions in Phase 2, allowing us to test whether the shape of the Universe is as simple as our theory predicts", stated Matt Jarvis from Oxford University, UK.

Matt Jarvis is referring to a series of fundamental physical principles, dating back to Copernicus in the 16th Century, which state that the shape of the matter distribution should look about the same on average, regardless of the direction you point your telescope. Recent observations have revealed troubling hints that this property, called "statistical isotropy", may not hold however. "If this turns out to be the case, there would be very serious ramifications for our understanding of the cosmos", concluded Dominik Schwarz, from Bielefeld University in Germany.
Source: University of Bielefeld

Back to Table of contents

Primeur weekly 2015-01-26

Exascale supercomputing

BSC and Intel extend research collaboration on systems behaviour analysis and prediction at Exascale R&D Lab ...

NASA scientist joins groundbreaking UK supercomputing start-up ...

Second European Exascale Software Initiative, EESI2, is organizing its final international conference ...

The Cloud

Anthem teams with IBM to strengthen IT operational performance ...

The European Space Agency builds a private Cloud platform with Red Hat ...

AccelOps' latest release delivers interactive security and performance analytics plus Cloud monitoring ...

Oracle Voice brings a mobile, speech-enabled virtual assistant to the Oracle Sales Cloud in Release 9 on smart phones ...

EuroFlash

New Head of Astroparticle Physics European Consortium appointed ...

REF signals deep impact as EPSRC announces GPB30 million for Impact Acceleration Accounts ...

New laser for computer chips ...

Graphene brings quantum effects to electronic circuits ...

Square Kilometre Array: The Cosmology Engine ...

Computer scientists from Saarbruecken improve the privacy of the Internet currency Bitcoin ...

Graphene enables all-electrical control of energy flow from light emitters ...

USFlash

DataDirect Networks again dominates as world leader in 2014/2015 TOP500 global supercomputing list ...

DataDirect Networks Storage Fusion Xcelerator (SFX) flash cache technology wins Storage Visions Award ...

UCSD study shows why protein mutations lead to familial form of Parkinson's disease ...

UC San Diego physicist Frank Würthwein joins SDSC ...

SDSC supercomputers to assist UC San Diego's 'Extreme Events' Center ...

SDSC announces UC Graduate Summer Fellowship programme ...

New wind-farm computer simulations unlock increased power generation ...

The City University of New York selects SGI to power major research projects ...

Air Force Research Laboratory's Department of Defense Supercomputer Resource Center (DSRC) to receive new supercomputer ...

Supercomputer simulations yield method for predicting behaviour of new concrete formulas ...

Oracle tackles data centre cost and complexity with next-generation engineered systems ...

A 3D view of the Greenland Ice Sheet opens window on ice history ...

Dedicated Computing joins the Intel Cluster Ready programme to offer high-performance computing cluster solutions for bioinformatics research ...

Researchers get $1.4 million to advance 'Big Data' for genomic research ...

Optimizing optimization algorithms ...

Scientists set quantum speed limit ...

New signal amplification process set to transform communications, imaging, and computing ...